首页> 外文期刊>Applied Spectroscopy: Society for Applied Spectroscopy >Taxonomic Classification of Phytoplankton with Multivariate Optical Computing, Part II: Design and Experimental Protocol of a Shipboard Fluorescence Imaging Photometer
【24h】

Taxonomic Classification of Phytoplankton with Multivariate Optical Computing, Part II: Design and Experimental Protocol of a Shipboard Fluorescence Imaging Photometer

机译:用多元光学计算对浮游植物进行分类学分类,第二部分:船载荧光成像光度计的设计和实验方案

获取原文
获取原文并翻译 | 示例
           

摘要

Differential pigmentation between phytoplankton allows use of fluorescence excitation spectroscopy for the discrimination and classification of different taxa. Here, we describe the design and performance of a fluorescence imaging photometer that exploits taxonomic differences for discrimination and classification. The fluorescence imaging photometer works by illuminating individual phytoplankton cells through an asynchronous spinning filter wheel, which produces bar code-like streaks in a fluorescence image. A filter position is covered with an opaque filter to create a reference dark position in the filter wheel rotation that is used to match each fluorescence streak with the corresponding filter. Fluorescence intensities of the imaged streaks are then analyzed for the purpose of spectral analysis, which allows taxonomic classification of the organism that produced the streaks. The theoretical performance and signal-to-noise ratio (SNR) specifications of these MOEs are described in Part I of this series. This report describes optical layout, flow cell design, magnification, depth of field, constraints on filter wheel and flow velocities, procedures for blank subtraction and flat-field correction, the measurement scheme of the instrument, and measurement of SNR as a measurement of filter wheel frequency. This is followed by an analysis of the sources of variance in measurements made by the photometer on the coccolithophore Emiliania huxleyi. We conclude that the SNR of E. huxleyi measurements is not limited by the sensitivity or noise attributes of the measurement system, but by dynamics in the fluorescence efficiency of the E. huxleyi cells. Even so, the minimum SNR requirements given in Part I for the instrument are met.
机译:浮游植物之间的色素沉着差异允许使用荧光激发光谱法来区分和分类不同的分类群。在这里,我们描述了利用生物分类学差异进行区分和分类的荧光成像光度计的设计和性能。荧光成像光度计的工作原理是通过异步旋转滤光轮照射单个浮游植物细胞,该滤光轮在荧光图像中产生条形码状的条纹。滤光镜的位置被不透明的滤光镜覆盖,以在滤光轮旋转中创建参考暗位置,该位置用于将每个荧光条纹与相应的滤光镜进行匹配。然后为了光谱分析的目的,分析成像的条纹的荧光强度,这允许对产生条纹的生物进行分类学分类。这些MOE的理论性能和信噪比(SNR)规范在本系列的第一部分中进行了描述。本报告介绍了光学布局,流通池设计,放大倍率,景深,滤光轮和流速的限制,空白扣除和平场校正的程序,仪器的测量方案以及作为滤光片测量值的SNR的测量车轮频率。接下来是对光度计在球石lithEmiliania huxleyi上进行测量的方差来源进行分析。我们得出的结论是,霍克斯利氏菌测量的SNR不受测量系统的灵敏度或噪声属性的限制,而是受到霍克斯利氏菌细胞荧光效率的动态变化的限制。即使这样,也可以满足仪器第一部分中给出的最低SNR要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号