首页> 外文期刊>Applied Soft Computing >Sensorless wind energy conversion system maximum power point tracking using Takagi-Sugeno fuzzy cerebellar model articulation control
【24h】

Sensorless wind energy conversion system maximum power point tracking using Takagi-Sugeno fuzzy cerebellar model articulation control

机译:基于Takagi-Sugeno模糊小脑模型关节控制的无传感器风能转换系统最大功率点跟踪

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this paper, we propose a sensorless wind energy conversion system (WECS) maximum wind power point tracking using Takagi-Sugeno fuzzy cerebellar model articulation control (T-S CMAC). The main objective of the WECS is to achieve maximum power transfer under various wind speeds without actual measurement of the wind velocity. We first represent the WECS, which uses a permanent magnet synchronous generator (PMSG), as a nonlinear dynamical model. To carry out the T-S CMAC design, we rewrite the WECS model as a T-S fuzzy representation. The T-S CMAC design is inspired by the architectural similarity of the T-S fuzzy control and CMAC where accordingly the PDC design control gains and weighting parameter are augmented into a single vector. The advantages of this approach are 3-fold: (i) increases accuracy of CMAC initial weights - we assign the initial weights of CMAC using the control gains solved by the LMIs from the PDC design; (ii) introduces adaptive ability in LMI-based design - the CMAC design allows time-varying parameters in the system; and (iii) relaxes assumption on system uncertainty - we drop the assumption that a strict upper bound on system uncertainty is known. Numerical simulations under various wind speeds show exponential convergence results which further verify the theoretical derivations. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种使用Takagi-Sugeno模糊小脑模型关节控制(T-S CMAC)的无传感器风能转换系统(WECS)最大风能点跟踪。 WECS的主要目标是在不实际测量风速的情况下实现各种风速下的最大功率传输。我们首先代表WECS,它使用永磁同步发电机(PMSG)作为非线性动力学模型。为了进行T-S CMAC设计,我们将WECS模型重写为T-S模糊表示。 T-S CMAC设计的灵感来自于T-S模糊控制和CMAC的体系结构相似性,因此PDC设计控制增益和加权参数相应地增加到单个矢量中。这种方法的优点是3倍:(i)提高CMAC初始权重的准确性-我们使用由PDC设计的LMI解决的控制增益来分配CMAC的初始权重; (ii)在基于LMI的设计中引入了自适应能力-CMAC设计允许系统中的时变参数; (iii)放宽了系统不确定性的假设-我们放弃了已知系统不确定性的严格上限的假设。在不同风速下的数值模拟显示了指数收敛结果,这进一步验证了理论推导。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号