...
【24h】

Production of medical radioisotopes with linear accelerators

机译:用线性加速器生产医用放射性同位素

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this study, we discuss producing radioisotopes using linear electron accelerators and address production and separation issues of photoneutron (γ,n) and photoproton (γ,p) reactions. While (γ,n) reactions typically result in greater yields, separating product nuclides from the target is challenging since the chemical properties of both are the same. Yields of (γ,p) reactions are typically lower than (γ,n) ones, however they have the advantage that target and product nuclides belong to different chemical species so their separation is often not such an intricate problem. In this paper we consider two examples, 100Mo(γ,n)99Mo and 68Zn(γ,p)67Cu, of photonuclear reactions. Monte-Carlo simulations of the yields are benchmarked with experimental data obtained at the Idaho Accelerator Center using a 44MeV linear electron accelerator. We propose using a kinematic recoil method for photoneutron production. This technique requires 100Mo target material to be in the form of nanoparticles coated with a catcher material. During irradiation, 99Mo atoms recoil and get trapped in the coating layer. After irradiation, the coating is dissolved and 99Mo is collected. At the same time, 100Mo nanoparticles can be reused. For the photoproduction method, 67Cu can be separated from the target nuclides, 68Zn, using standard exchange chromatography methods. Monte-Carlo simulations were performed and the 99Mo activity was predicted to be about 7MBq/(g*kW*h) while 67Cu activity was predicted to be about 1MBq/(g*kW*h). Experimental data confirm the predicted activity for both cases which proves that photonuclear reactions can be used to produce radioisotopes. Lists of medical isotopes which might be obtained using photonuclear reactions have been compiled and are included as well.
机译:在这项研究中,我们讨论使用线性电子加速器生产放射性同位素,并解决光中子(γ,n)和光子(γ,p)反应的生产和分离问题。尽管(γ,n)反应通常会产生更高的收率,但由于目标化合物的化学性质相同,因此将产物核素与目标物分离是一项挑战。 (γ,p)反应的收率通常低于(γ,n)反应的收率,但是它们具有目标核素和产物核素属于不同化学物种的优势,因此它们的分离通常不会是一个复杂的问题。在本文中,我们考虑两个例子,即光核反应的100Mo(γ,n)99Mo和68Zn(γ,p)67Cu。产量的蒙特卡洛模拟以爱达荷州加速器中心使用44MeV线性电子加速器获得的实验数据为基准。我们建议使用运动后坐力方法进行光中子生产。该技术要求100Mo靶材为包覆有捕集剂材料的纳米颗粒形式。在辐照期间,99Mo原子反冲并被捕获在涂层中。辐照后,涂层溶解并收集到99Mo。同时,可以重复使用100Mo纳米颗粒。对于光生产方法,可以使用标准交换色谱法将67Cu与目标核素68Zn分离。进行了蒙特卡洛模拟,预测99Mo活性约为7MBq /(g * kW * h),而预测67Cu活性约为1MBq /(g * kW * h)。实验数据证实了两种情况下的预测活性,这证明了光核反应可用于产生放射性同位素。可以使用光核反应获得的医学同位素清单也已编制并包括在内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号