...
【24h】

Production of medical radioisotopes with linear accelerators

机译:用线性加速器生产医疗放射性同位素

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this study, we discuss producing radioisotopes using linear electron accelerators and address production and separation issues of photoneutron (γ,n) and photoproton (γ,p) reactions. While (γ,n) reactions typically result in greater yields, separating product nuclides from the target is challenging since the chemical properties of both are the same. Yields of (γ,p) reactions are typically lower than (γ,n) ones, however they have the advantage that target and product nuclides belong to different chemical species so their separation is often not such an intricate problem. In this paper we consider two examples, 100Mo(γ,n)99Mo and 68Zn(γ,p)67Cu, of photonuclear reactions. Monte-Carlo simulations of the yields are benchmarked with experimental data obtained at the Idaho Accelerator Center using a 44MeV linear electron accelerator. We propose using a kinematic recoil method for photoneutron production. This technique requires 100Mo target material to be in the form of nanoparticles coated with a catcher material. During irradiation, 99Mo atoms recoil and get trapped in the coating layer. After irradiation, the coating is dissolved and 99Mo is collected. At the same time, 100Mo nanoparticles can be reused. For the photoproduction method, 67Cu can be separated from the target nuclides, 68Zn, using standard exchange chromatography methods. Monte-Carlo simulations were performed and the 99Mo activity was predicted to be about 7MBq/(g*kW*h) while 67Cu activity was predicted to be about 1MBq/(g*kW*h). Experimental data confirm the predicted activity for both cases which proves that photonuclear reactions can be used to produce radioisotopes. Lists of medical isotopes which might be obtained using photonuclear reactions have been compiled and are included as well.
机译:在这项研究中,我们讨论使用线性电子促进剂的产生放射性同位素和光谦龙(γ,N)和光拷贝(γ,P)反应的地址产生和分离问题。虽然(γ,N)反应通常导致更大的产率,但由于两者两者的化学性质是相同的,分离靶标的产物核素是具有挑战性的。 (γ,p)反应的产率通常低于(γ,n),然而它们具有靶标和产物核素属于不同的化学物质的优点,因此它们的分离通常不是如此复杂的问题。在本文中,我们考虑了两个实施例,100mO(γ,n)99mO和68zn(γ,p)67cu,光核反应。收益率的Monte-Carlo模拟是通过使用44mev线性电子加速器在爱达荷加速器中心获得的实验数据的基准测试。我们建议使用用于光励将生产的运动反冲方法。该技术需要100Mo靶材料以纳米颗粒的形式涂有捕获材料。在照射期间,99Mo原子反冲并被捕获在涂层中。照射后,涂层溶解,收集99MO。同时,可以重复使用100MO纳米颗粒。对于光保护方法,可以使用标准交换色谱法将67Cu与靶核素68zn分离。进行Monte-Carlo模拟,预测99Mo活性约为7Mbq /(g * kW * h),而预测67cu活性约为1Mbq /(g * kW * h)。实验数据证实了两种情况的预测活动,证明了可用于生产放射性同位素的光子反应。使用光子核反应可以获得的医疗同位素列表已经编制并且也包括在内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号