...
首页> 外文期刊>Applied mathematics and optimization >Optimal Attitude Control of a Rigid Body
【24h】

Optimal Attitude Control of a Rigid Body

机译:刚体的最佳姿态控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Being mainly interested in the control of satellites, we investigate the problem of maneuvering a rigid body from a given initial attitude to a desired final attitude at a specified end time in such a way that a cost functional measuring the overall angular velocity is minimized. This problem is solved by applying a recent technique of Jurdjevic in geometric control theory. Essentially, this technique is just the classical calculus of variations approach to optimal control problems without control constraints, but formulated for control problems on arbitrary manifolds and presented in coordinate-free language. We model the state evolution as a differential equation on the nonlinear state space G=SO(3), thereby completely circumventing the inevitable difficulties (singularities and ambiguities) associated with the use of parameters such as Euler angles or quaternions. The angular velocities wk about the body's principal axes are used as (unbounded) control variables. Applying Pontryagin's Maximum Principle, we lift any optimal trajectory t→g*(t) to a trajectory on T*G which is then revealed as an integral curve of a certain time-invariant Hamiltonian vector field. Next, the calculus of Poisson brackets is applied to derive a system of differential equations for the optimal angular velocities t→w*k(t); once these are known the controlling torques which need to be applied are determined by Euler's equations. In special cases an analytical solution in closed form can be obtained. In general, the unknown initial values w*k(t0) can be found by a shooting procedure which is numerically much less delicate than the straightforward transformation of the optimization problem into a two-point boundary-value problem. In fact, our approach completely avoids the explicit introduction of costate (or odjoint) variables and yields a differential equation for the control variables rather than one for the adjoint variables. This has the consequence that only variables with a clear physical significance (namely angular velocities) are involved for which good a priori estimates of the initial values are available.
机译:我们主要对卫星的控制感兴趣,因此研究了在给定的结束时间以给定的初始姿态到所需的最终姿态操纵刚体的问题,以这种方式使测量总角速度的成本函数最小化。通过在几何控制理论中应用Jurdjevic的最新技术解决了这个问题。从本质上讲,该技术只是无控制约束的最优控制问题的经典变分方法,而是针对任意流形上的控制问题制定的,并且以无坐标语言表示。我们将状态演化建模为非线性状态空间G = SO(3)上的微分方程,从而完全规避了与使用诸如Euler角或四元数之类的参数相关的不可避免的困难(奇异性和歧义性)。围绕主体主轴的角速度wk用作(无界)控制变量。应用庞特里亚金的最大原理,我们将任何最优轨迹t→g *(t)提升到T * G上的轨迹,然后将其显示为某个时不变哈密顿向量场的积分曲线。接下来,使用泊松括号的演算来推导用于最佳角速度t→w * k(t)的微分方程组。一旦知道了这些,就需要通过欧拉方程确定需要施加的控制转矩。在特殊情况下,可以获得封闭形式的分析溶液。通常,未知的初始值w * k(t0)可以通过射击过程找到,该过程在数值上不如将优化问题直接转换为两点边界值问题那么精确。实际上,我们的方法完全避免了显式引入costate(或odjoint)变量,并产生了控制变量的微分方程,而不是伴随变量的微分方程。结果是,仅涉及具有明显物理意义的变量(即角速度),对于这些变量可获得良好的初始值的先验估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号