首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Heat transfer processes in parallel-plate heat exchangers of thermoacoustic devices - numerical and experimental approaches
【24h】

Heat transfer processes in parallel-plate heat exchangers of thermoacoustic devices - numerical and experimental approaches

机译:热声装置平行板式换热器的传热过程-数值和实验方法

获取原文
获取原文并翻译 | 示例
           

摘要

This paper addresses the issues of heat transfer in oscillatory flow conditions, which are typically found in thermoacoustic devices. The analysis presented concerns processes taking place in the individual "channels" of the parallel-plate heat exchangers (HX), and is a mixture of experimental and numerical approaches. In the experimental part, the paper describes the design of experimental apparatus to study the thermal-fluid processes controlling heat transfer in thermoacoustic heat exchangers on the micro-scale of the individual channels. Planar Laser Induced Fluorescence (PLIF) and Particle Image Velocimetry (PIV) techniques are applied to obtain spatially and temporally resolved temperature and velocity fields within the HX channels. The temperature fields allow obtaining the local and global, phase-dependent heat transfer rates and Nusselt numbers, and their dependence on the Reynolds number of the oscillating flow. The numerical part of the paper deals with the implementation of CFD modelling capabilities to capture the physics of thermal-fluid processes in the micro-scale and to validate the models against the experimental data. A two-dimensional low Mach number computational model is implemented to analyse the time-averaged temperature field and heat transfer rates in a representative domain of the HXs. These are derived by integrating the thermoacoustic equations of the standard linear theory into a numerical calculus scheme based on the energy balance. The comparisons between the experimental and numerical results in terms of temperature and heat transfer distributions suggest that the optimal performance of heat exchangers can be achieved when the gas displacement amplitude is close to the length of hot and cold heat exchanger. Heat transfer coefficients from the gas-side can be predicted with a confidence of about 40% at moderate acoustic Reynolds numbers.
机译:本文讨论了在振荡流条件下的传热问题,这些问题通常在热声设备中发现。提出的分析涉及在平行板式热交换器(HX)的各个“通道”中发生的过程,并且是实验方法和数值方法的混合。在实验部分,本文描述了实验设备的设计,以研究在单个通道的微观尺度上控制热声热交换器中传热的热流体过程。应用平面激光诱导荧光(PLIF)和粒子图像测速(PIV)技术来获得HX通道内的时空分辨温度和速度场。温度场允许获得局部和全局的,与相位有关的传热速率和Nusselt数,以及它们对振荡流的雷诺数的依赖性。本文的数字部分涉及CFD建模功能的实现,以捕获微观尺度的热流体过程的物理特性,并根据实验数据验证模型。实施了二维低马赫数计算模型,以分析HXs代表域中的时间平均温度场和传热速率。这些是通过将标准线性理论的热声方程集成到基于能量平衡的数值演算方案中得出的。在温度和传热分布方面的实验结果和数值结果之间的比较表明,当气体置换幅度接近于热和冷热交换器的长度时,可以实现热交换器的最佳性能。在适度的声学雷诺数下,可以预测气体侧的传热系数,其置信度约为40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号