首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Power and efficiency optimization for combined Brayton and inverse Brayton cycles
【24h】

Power and efficiency optimization for combined Brayton and inverse Brayton cycles

机译:组合的布雷顿循环和布雷顿反循环的功率和效率优化

获取原文
获取原文并翻译 | 示例
           

摘要

A thermodynamic model for open combined Brayton and inverse Brayton cycles is established considering the pressure drops of the working fluid along the flow processes and the size constraints of the real power plant using finite time thermodynamics in this paper. There are 11 flow resistances encountered by the gas stream for the combined Brayton and inverse Brayton cycles. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, combustion inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances control the air flow rate and the net power output. The relative pressure drops associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle. The analytical formulae about the relations between power output, thermal conversion efficiency, and the compressor pressure ratio of the top cycle are derived with the 11 pressure drop losses in the intake, compression, combustion, expansion, and flow process in the piping, the heat transfer loss to the ambient, the irreversible compression and expansion losses in the compressors and the turbines, and the irreversible combustion loss in the combustion chamber. The performance of the model cycle is optimized by adjusting the compressor inlet pressure of the bottom cycle, the air mass flow rate and the distribution of pressure losses along the flow path. It is shown that the power output has a maximum with respect to the compressor inlet pressure of the bottom cycle, the air mass flow rate or any of the overall pressure drops, and the maximized power output has an additional maximum with respect to the compressor pressure ratio of the top cycle. When the optimization is performed with the constraints of a fixed fuel flow rate and the power plant size, the power output and efficiency can be maximized again by properly allocating the fixed overall flow area among the compressor inlet of the top cycle and the turbine outlet of the bottom cycle.
机译:本文利用有限时间热力学,考虑工作流体沿流动过程的压降和实际发电厂的尺寸约束,建立了开放式布雷顿反布雷顿循环的热力学模型。对于组合的布雷顿循环和布雷顿反循环,气流遇到11个流动阻力。其中的四个,即通过压缩机和涡轮的叶片和叶片的摩擦,与等熵效率有关。由于在顶部循环的压缩机入口,燃烧入口和出口,顶部循环的涡轮机出口,底部循环的涡轮机出口,热交换器入口和压缩机处的流动横截面的变化,始终存在剩余的流动阻力。底部循环的入口。这些电阻控制空气流量和净功率输出。与通过各个横截面的流动相关的相对压降是顶部循环的压缩机入口相对压降的函数。有关功率输出,热转换效率和最高循环压缩机压力比之间关系的解析公式,是根据管道中的进气,压缩,燃烧,膨胀和流动过程中的11个压降损失,热量得出的。转移到周围环境的损失,压缩机和涡轮机中不可逆的压缩和膨胀损失以及燃烧室中的不可逆燃烧损失。通过调整底部循环的压缩机入口压力,空气质量流量和沿流路的压力损失分布,可以优化模型循环的性能。结果表明,功率输出相对于底部循环的压缩机入口压力,空气质量流量或任何总压降具有最大值,而最大功率输出相对于压缩机压力具有附加的最大值。最高循环比率。当在固定燃料流量和发电厂大小的约束下进行优化时,可以通过在顶部循环的压缩机入口和涡轮出口的涡轮机出口之间适当分配固定的总流量区域,再次使功率输出和效率最大化。最底层的周期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号