首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Power and efficiency optimization for combined Brayton and two parallel inverse Brayton cycles. Part 1: description and modelling
【24h】

Power and efficiency optimization for combined Brayton and two parallel inverse Brayton cycles. Part 1: description and modelling

机译:组合布雷顿和两个并行逆布雷顿循环的功率和效率优化。第1部分:描述和建模

获取原文
获取原文并翻译 | 示例
           

摘要

A thermodynamic model for open combined Brayton and two parallel inverse Brayton cycles is established using finite-time thermodynamics in part A of the current paper. The flow processes of the working fluid with the pressure drops of the working fluid and the size constraints of the real power plant are modelled. There are 17 flow resistances encountered by the gas stream for the combined Brayton and two parallel inverse Brayton cycles. Six of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, combustion inlet and outlet, turbine outlet of the top cycle, turbine outlets of the bottom cycle, heat exchanger inlets, and compressor inlets of the bottom cycle. These resistances control the air flowrate and the net power output. The relative pressure drops associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle. The analytical formulae about the relations between power output, thermal conversion efficiency, and the compressor pressure ratio of the top cycle are derived with the 17 pressure drop losses in the intake, compression, combustion, expansion, and flow process in the piping, the heat transfer loss to ambient, the irreversible compression and expansion losses in the compressors and the turbines, and the irreversible combustion loss in the combustion chamber. The performance of the model cycle is optimized by adjusting the compressor inlet pressure of the bottom cycles, the mass flowrate and the distribution of pressure losses along the flow path in part B of the current paper. [PUBLICATION ABSTRACT]
机译:利用本文的A部分中的有限时间热力学,建立了开放式组合布雷顿和两个平行逆布雷顿循环的热力学模型。利用工作流体的压降和实际发电厂的尺寸约束对工作流体的流动过程进行建模。对于组合的布雷顿和两个平行的反向布雷顿循环,气流遇到17个流动阻力。其中六个,即通过压缩机和涡轮的叶片和叶片的摩擦,与等熵效率有关。由于顶部循环的压缩机入口,燃烧入口和出口,顶部循环的涡轮机出口,底部循环的涡轮机出口,换热器入口和压缩机的流动横截面的变化,始终存在剩余的流动阻力。底部循环的入口。这些电阻控制空气流量和净功率输出。与通过各个横截面的流动相关的相对压降是顶部循环的压缩机入口相对压降的函数。有关功率输出,热转换效率和最高循环压缩机压力比之间关系的解析公式,是根据管道中的进气,压缩,燃烧,膨胀和流动过程中的17个压降损失,热量得出的。转移到周围环境的损失,压缩机和涡轮机中不可逆的压缩和膨胀损失以及燃烧室中的不可逆燃烧损失。通过调整底部循环的压缩机入口压力,质量流率和沿纸张B部分沿流路的压力损失分布,可以优化模型循环的性能。 [出版物摘要]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号