首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Droplet dynamics and heat transfer for dropwise condensation at lower and ultra-lower pressure
【24h】

Droplet dynamics and heat transfer for dropwise condensation at lower and ultra-lower pressure

机译:液滴动力学和传热,可在低压和超低压下进行逐滴冷凝

获取原文
获取原文并翻译 | 示例
       

摘要

To investigate the transient characteristics of initial droplet size distribution, steady droplet size distribution and thermal resistance distribution at lower and ultra-lower steam pressure, dropwise condensation at the pressure range from atmospheric to 1.5 kPa has been studied. During the transient process, the initial nucleated droplets satisfied lognormal distribution, and then a bimodal distribution formed, finally revealed an exponential distribution. The peak value was smaller and the evolution was slower with the reduction of steam pressure. The corresponding surface coverage increased to 0.7-0.8 at the steady condensation which was strongly dependent on the pressure. Introducing a dimensionless time, the surface coverage evolution indicated that the time consumed by direct growth increased as the pressure decreased. The effect of steam pressure on droplet size distribution revealed a more scattered distribution, larger departure size, and denser large droplets at low pressure, resulting in the reduction of the effective heat transfer area. By comparing the thermal resistance distribution at various pressures, it showed that large droplets induced a greater proportion of resistance at low pressure. The findings help clarifying the limitations of droplet growth mechanism and offer guidelines for the optimization of surface morphology to enhance the steam condensation at low and ultra-low pressure. (C) 2014 Elsevier Ltd. All rights reserved.
机译:为了研究初始液滴尺寸分布,稳定液滴尺寸分布以及在较低和超低蒸汽压力下的热阻分布的瞬态特性,研究了在大气压至1.5 kPa压力范围内的逐滴冷凝。在过渡过程中,初始有核液滴满足对数正态分布,然后形成双峰分布,最终揭示出指数分布。随着蒸汽压力的降低,峰值更小,演化更慢。稳定凝结时相应的表面覆盖率增加到0.7-0.8,这在很大程度上取决于压力。引入无量纲时间后,表面覆盖率的演变表明,直接生长所消耗的时间随着压力的降低而增加。蒸汽压力对液滴尺寸分布的影响表明,在较低的压力下,分布更分散,出口尺寸更大,且较大的液滴更密实,导致有效传热面积减小。通过比较各种压力下的热阻分布,可以看出大液滴在低压下会产生更大比例的电阻。这些发现有助于阐明液滴生长机理的局限性,并为优化表面形态以增强低压和超低压下的蒸汽凝结提供指导。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号