...
首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Numerical simulation of premixed methane/air micro flame: Effects of simplified one step chemical kinetic mechanisms on the flame stability
【24h】

Numerical simulation of premixed methane/air micro flame: Effects of simplified one step chemical kinetic mechanisms on the flame stability

机译:甲烷/空气微混合火焰的数值模拟:简化的一步化学动力学机理对火焰稳定性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The effects of a simplified one step overall chemical kinetic equation on a micro flame were investigated with different kinetics models, namely Mantel, Duterque and the so called Arrhenius models. A numerical study of a premixed methane/air flame in lean conditions (phi = 0.9) within a rectangular tubular micro reactor was undertaken by solving the 2D governing equations. More precisely, their influence on the structure of the flame, the temperature of the fluid along the axial displacement of the reactor and the walls temperatures were analyzed. The results show that one step chemical kinetic mechanism affected both the shape of the flame and the combustion temperature whose magnitude is globally overestimated, corroborating the results in the existing literature. Among the three simulated models, the Mantel model allowed a stable flame anchored to the inlet reactor with a convex form, while the Duterque model gave a stable elongated flame with considerable ignition delay. A dead zone is observed with fluid accumulation at the entrance of the reactor which may explain the strong reaction rate and the very high combustion temperature obtained, despite the development of a flame in the form of a very hot illuminated spot lit all around. The so called Arrhenius model resulted in a rapid extinction of the flame and does not seem to take into account all the kinetic phenomena for appropriate numerical simulations of the micro combustion. Furthermore the one step overall chemical kinetic approach seems to determine the initial temperature applicable for both fluid flow area and the walls of the micro reactor that favors the inset of premixed mixture combustion during micro combustion calculations. (C) 2014 Elsevier Ltd. All rights reserved.
机译:使用Mantel,Duterque和所谓的Arrhenius模型等不同的动力学模型,研究了简化的一步整体化学动力学方程对微火焰的影响。通过求解二维控制方程,在矩形管式微型反应器中进行了稀薄条件(φ= 0.9)下甲烷/空气预混合火焰的数值研究。更准确地说,分析了它们对火焰结构,沿反应器轴向位移的流体温度和壁温的影响。结果表明,一步化学动力学机制同时影响了火焰的形状和燃烧温度,其大小总体上被高估了,从而证实了现有文献的结果。在这三个模拟模型中,Mantel模型允许将稳定的火焰以凸形形式锚固在入口反应堆上,而Duterque模型则提供了具有相当长的点火延迟的稳定的细长火焰。观察到死区,在反应器的入口处积聚了流体,这可以解释强反应速率和获得的非常高的燃烧温度,尽管形成了火焰,火焰以非常热的照明点的形式遍布四周。所谓的阿伦尼乌斯(Arrhenius)模型导致了火焰的快速熄灭,并且似乎没有考虑到微燃烧的适当数值模拟的所有动力学现象。此外,一步整体化学动力学方法似乎确定了适用于流体流动面积和微反应器壁的初始温度,该温度有利于在微燃烧计算期间进行预混合混合物燃烧。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号