首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Aerothermodynamics of tight rotor tip clearance flows in high-speed unshrouded turbines
【24h】

Aerothermodynamics of tight rotor tip clearance flows in high-speed unshrouded turbines

机译:高速无罩涡轮中紧密的转子尖端间隙流动的空气热力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The inevitable clearance between stationary and rotating parts in any fluid machinery gives rise to leakage flows, which strongly affect the overall performance of the machine. In modern gas turbine engines, the existing gap between the rotor airfoil tip and the shroud is responsible for about one third of the total aerodynamic losses. Additionally, this leakage flow induces fierce unsteady heat loads onto the rotor casing and provokes significant thermal stresses at the airfoil tip. One can attempt to curtail these detrimental effects by running tight clearances; however, the meager number of publications on this topic presents an obstacle to exploiting the design opportunities. This paper presents the outcome of an extensive numerical investigation of a high pressure turbine stage operating at engine-representative non-dimensional parameters (Reynolds and Mach number, temperature ratios). RANS calculations were performed using the Numeca FINE/Turbo suite, adopting the k-ω SST turbulence model to investigate the aerodynamic and heat transfer characteristics in the tip region. Five clearances, ranging from 0.1% to 1.9% of the rotor channel height, were simulated at adiabatic and isothermal (T_(total, in)/T_w = 1.57) conditions. The detailed flow analysis revealed an unexpected aerodynamic flow topology at tight clearances (h/H < 0.5%), characterized by a reverse flow over a significant part of the tip gap region. The heat transfer on the airfoil tip, shroud and near-tip regions was examined in detail, with emphasis on the different driving phenomena. This elaborate numerical study provides a deeper insight into the complex aerothermal physics of leakage flows occurring for tight clearances in a high-speed environment relevant to any fluid machinery design and analysis.
机译:在任何流体机械中,固定部件和旋转部件之间不可避免的间隙都会引起泄漏流,这会严重影响机械的整体性能。在现代燃气涡轮发动机中,转子翼型叶尖和护罩之间的现有间隙占总空气动力学损失的约三分之一。另外,该泄漏流在转子壳体上引起剧烈的不稳定热负荷,并在翼型尖端处引起明显的热应力。可以通过缩小间隙来尝试减少这些有害影响。但是,有关该主题的出版物数量很少,这给开发设计机会带来了障碍。本文介绍了在发动机代表的无量纲参数(雷诺和马赫数,温度比)下运行的高压涡轮级的广泛数值研究的结果。使用Numeca FINE / Turbo套件进行RANS计算,采用k-ωSST湍流模型来研究尖端区域的空气动力和传热特性。在绝热和等温(T_(total,in)/ T_w = 1.57)条件下模拟了五个间隙,范围为转子通道高度的0.1%至1.9%。详细的流量分析显示出在狭窄间隙(h / H <0.5%)时出现了意想不到的空气动力学拓扑,其特征是在尖端间隙区域的大部分区域出现了逆流。详细研究了翼型叶尖,护罩和近叶尖区域的传热,重点是不同的驱动现象。这项详尽的数值研究为与任何流体机械设计和分析相关的高速环境中的紧密间隙所发生的泄漏流的复杂空气热物理学提供了更深入的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号