首页> 外文期刊>Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry >Hydrogeochemical modelling of fluid-rock interactions triggered by seawater injection into oil reservoirs: Case study Miller field (UK North Sea)
【24h】

Hydrogeochemical modelling of fluid-rock interactions triggered by seawater injection into oil reservoirs: Case study Miller field (UK North Sea)

机译:海水注入油藏引发的流体-岩石相互作用的水文地球化学模拟:案例研究Miller油田(英国北海)

获取原文
获取原文并翻译 | 示例
           

摘要

A hydrogeochemical model is presented and applied to quantitatively elucidate interdependent reactions among minerals and formation water-seawater mixtures at elevated levels of CO _2 partial pressure. These hydrogeochemical reactions (including scale formation) occur within reservoir aquifers and wells and are driven by seawater injection. The model relies on chemical equilibrium thermodynamics and reproduces the compositional development of the produced water (formation water-seawater mixtures) of the Miller field, UK North Sea. This composition of the produced water deviates from its calculated composition, which could result solely from mixing of both the end members (formation water and seawater). This indicates the effect of hydrogeochemical reactions leading to the formation and/or the dissolution of mineral phases.A fairly good match between the modelled and measured chemical composition of produced water indicates that hydrogeochemical interactions achieve near-equilibrium conditions within the residence time of formation water-seawater mixtures at reservoir conditions. Hence the model enables identification of minerals (including scale minerals), to quantitatively reproduce and to predict their dissolution and/or formation. The modelling results indicate that admixing of seawater into formation water triggers the precipitation of Sr-Barite solid solution, CaSO _4 phases and dolomite. In contrast, calcite and microcrystalline quartz are dissolved along the seawater flow path from the injection well towards the production well. Depending on the fraction of seawater admixed, interdependent reactions induce profound modifications to the aquifer mineral phase assemblage. At low levels of seawater admixture, Ba-Sr sulfate solid solution is precipitated and coupled to concurrent dissolution of calcite and microcrystalline quartz. Massive dissolution of calcite and the formation of CaSO _4 phases and dolomite are triggered by intense seawater admixture. Hydrogeochemical modelling to reproduce observed compositional trends, resulting from an increase of the seawater fraction, can help (1) to explain changing production properties and (2) to predict the type and the degree of scaling depending on the content of injected seawater.
机译:提出了一种水文地球化学模型,并将其用于定量阐明在升高的CO _2分压水平下矿物与地层水-海水混合物之间的相互依存反应。这些水文地球化学反应(包括水垢形成)发生在储层含水层和井中,并由海水注入驱动。该模型依赖于化学平衡热力学,并再现了英国北海米勒油田采出水(地层水-海水混合物)的成分变化。采出水的这种成分偏离了其计算出的成分,这可能仅是由于两个末端构件(地层水和海水)的混合而产生的。这表明了水文地球化学反应导致矿物相形成和/或溶解的影响。模拟和实测的采出水化学成分之间的良好匹配表明,水文地球化学相互作用在地层水停留时间内达到了接近平衡的条件。 -在储层条件下的海水混合物。因此,该模型能够识别矿物(包括鳞状矿物),以定量地繁殖并预测其溶解和/或形成。模拟结果表明,将海水混入地层水中会触发Sr-Barite固溶体,CaSO_4相和白云石的沉淀。相反,方解石和微晶石英沿着从注入井到生产井的海水流动路径溶解。根据海水混合的比例,相互依赖的反应会引起含水层矿物相组合的深刻变化。在海水掺混物含量较低的情况下,Ba-Sr硫酸盐固溶体沉淀并与方解石和微晶石英同时溶解耦合。强烈的海水混合触发了方解石的大量溶解以及CaSO_4相和白云石的形成。通过重现海水比例增加而产生的观察到的组成趋势的水文地球化学模型可以帮助(1)解释生产特性的变化,以及(2)根据注入的海水含量预测类型和结垢程度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号