...
首页> 外文期刊>Nanoscale >An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing
【24h】

An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing

机译:nickel-catalyzed从头开始研究非晶碳转变成石墨烯在快速热处理

获取原文
获取原文并翻译 | 示例

摘要

Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 degrees C (below the melting point of bulk Ni). It is found that the a-C-to-graphene transformation entails the metal-induced crystallization and layer exchange mechanism, rather than the conventional dissolution/precipitation mechanism typically involved in Ni-catalyzed chemical vapor deposition (CVD) growth of graphene. The multi-layer graphene can be tuned by changing the relative thicknesses of deposited a-C and Ni thin films. Our AIMD simulations suggest that the easy evaporation of surplus Ni with excess C is likely attributed to the formation of a viscous-liquid-like Ni-C solution within the temperature range of 900-1800 K and to the faster diffusion of C atoms than that of Ni atoms above 600 K. Even at room temperature, sp(3)-C atoms in a-C are quickly converted to sp(2)-C atoms in the course of the simulation, and the graphitic C formation can occur at low temperature. When the temperature is as high as 1200 K, the grown graphitic structures reversely dissolve into Ni. Because the rate of temperature increase is considerably faster in the AIMD simulations than in realistic experiments, defects in the grown graphitic structures are kinetically trapped. In this kinetic growth stage, the carbon structures grown from sp(3)-carbon or from sp(2)-carbon exhibit marked differences.
机译:从头开始分子动力学模拟(AIMD)是用来研究化学机制的Ni-catalyzed非晶碳(a - c)的转换石墨烯在快速热处理(RTP)在各种实验直接生长石墨烯通过蒸发介质表面剩余镍和C在1100摄氏度(以下熔点散装镍)。a-C-to-graphene转换需要metal-induced结晶层交换机制,而不是传统典型的溶解/沉淀机制参与Ni-catalyzed化学气石墨烯沉积(CVD)增长。多层石墨烯可以通过改变来调谐a - c和镍沉积薄的相对厚度电影。蒸发剩余镍过剩C是可能的归因于的形成viscous-liquid-like Ni-C解决方案中900 - 1800 K温度范围和速度比镍原子C原子的扩散600 K。得了迅速转化为sp (2) - c原子的仿真过程中,石墨C形成低温可能发生。温度高达1200 K,增长相对地溶入镍石墨结构。因为温度升高的速度相当快的AIMD模拟比在实际的实验中,缺陷增加石墨结构活动被困。这种动能增长阶段,碳结构从sp从sp(2)(3)碳或碳表现出明显的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号