首页> 外文期刊>Applied Microbiology and Biotechnology >Contributions of citrate in redox potential maintenance and ATP production: Metabolic pathways and their regulation in Lactobacillus panis PM1
【24h】

Contributions of citrate in redox potential maintenance and ATP production: Metabolic pathways and their regulation in Lactobacillus panis PM1

机译:柠檬酸在氧化还原电位维持和ATP产生中的贡献:乳酸菌PM1中的代谢途径及其调控

获取原文
获取原文并翻译 | 示例
       

摘要

Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli and can utilize various NADH-reoxidizing routes (e.g., citrate, glycerol, and oxygen) according to environmental conditions. In this study, we investigated the ability of L. panis PM1 to produce succinate, acetate, and lactate via citrate utilization. Possible pathways, as well as regulation, for citrate metabolism were examined on the basis of the genome sequence data and metabolic profiles of L. panis PM1. The presence of citrate led to the up-regulation, at the transcriptional level, of the genes encoding for citrate lyase, malate dehydrogenase, and malic enzyme of the citrate pathways by 10- to 120-fold. The transcriptional regulator of the dha operon coding for glycerol dehydratase of L. panis PM1 repressed the expression of the citrate lyase gene (10-fold). Metabolite analyses indicated that the transcriptional enhancement by citrate stimulated succinate yield. Citrate metabolism contributed to energy production by providing a major alternate pathway for NAD~+ regeneration and allowed acetyl phosphate to yield acetate/ATP instead of ethanol/NAD~+. Additionally, a branching pathway from oxaloacetate to pyruvate increased the pool of lactate, which was then used to produce ATP during stationary phase. However, the redirection of NADH-to-citrate utilization resulted in stress caused by end-products (i.e., succinate and acetate). This stress reduced succinate production by up to 50 % but did not cause significant changes at transcriptional level. Overall, citrate utilization was beneficial for the growth of L. panis PM1 by providing a NAD~+ regeneration route and producing extra ATP.
机译:潘氏乳杆菌PM1属于第III组异发酵乳杆菌,可根据环境条件利用多种NADH重氧化途径(例如柠檬酸盐,甘油和氧气)。在这项研究中,我们调查了潘氏乳杆菌PM1通过柠檬酸盐利用产生琥珀酸盐,乙酸盐和乳酸盐的能力。柠檬酸代谢的可能途径和调控,是根据基因组序列数据和L. panis PM1的代谢谱进行的。柠檬酸盐的存在导致在转录水平上柠檬酸盐途径的编码柠檬酸裂合酶,苹果酸脱氢酶和苹果酸酶的基因上调10-120倍。编码潘氏乳杆菌PM1甘油脱水酶的dha操纵子的转录调节子抑制了柠檬酸裂合酶基因的表达(10倍)。代谢物分析表明,柠檬酸盐的转录增强刺激了琥珀酸酯的产量。柠檬酸盐的代谢通过为NAD〜+的再生提供了主要的替代途径,促进了能量的产生,并使乙酰基磷酸酯产生乙酸盐/ ATP,而不是乙醇/ NAD〜+。此外,从草酰乙酸到丙酮酸的支化途径增加了乳酸库,然后在稳定期将其用于生产ATP。然而,将NADH转换成柠檬酸盐的利用导致由最终产物(即琥珀酸盐和乙酸盐)引起的压力。这种压力最多可将琥珀酸盐的产量降低50%,但在转录水平上不会引起显着变化。总体而言,柠檬酸盐的利用通过提供NAD〜+再生途径并产生额外的ATP,有利于潘氏乳杆菌PM1的生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号