首页> 外文期刊>Applied Microbiology and Biotechnology >Acetoclastic methanogenesis is likely the dominant biochemical pathway of palmitate degradation in the presence of sulfate
【24h】

Acetoclastic methanogenesis is likely the dominant biochemical pathway of palmitate degradation in the presence of sulfate

机译:在硫酸盐存在下,破骨细胞产甲烷菌可能是棕榈酸酯降解的主要生化途径。

获取原文
获取原文并翻译 | 示例
           

摘要

Long chain fatty acids (LCFAs) are important intermediates in the anaerobic degradation of n-alkanes. In order to find out the biochemical processes involved in the degradation of LCFAs, palmitate (a typical LCFA) was used as a substrate, and low-temperature oilfield production fluids were used as a source of microorganisms to establish two anaerobic systems, one with addition of sulfate as exogenous electron acceptor (SP), another without exogenous electron acceptor (MP) and both incubated at room temperature. After more than 2 years of incubation, about 48 and 57.4 % of the palmitate were degraded in samples of MP and SP, respectively. Methane production reached 1408 and 1064 mu mol for MP and SP, respectively. Clone libraries of archaeal 16S rRNA genes showed that the predominant archaea in the sulfate-amended cultures (SP) was Methanosaeta whereas Methanocalculus dominated the culture without addition of exogenous sulfate (MP). This observation shows that palmitate could be biodegraded into methane through beta-oxidation and acetoclastic methanogenesis in the presence of with or without sulfate. The high occurrence of Methanosaeta in the sulfate-amended system indicates that acetoclastic methanogenesis was not inhibited/little affected by the addition of sulfate. Acetoclastic methanogenesis might be the predominant biochemchimcal pathway of methane generation in enrichment cultures amended with sulfate. These results shed light on alternative methanogenic pathways in the presence of sulfate.
机译:长链脂肪酸(LCFA)是正构烷烃厌氧降解的重要中间体。为了找出与LCFA降解有关的生化过程,使用棕榈酸酯(一种典型的LCFA)作为底物,并使用低温油田采出液作为微生物的来源,以建立两个厌氧系统,其中一个添加厌氧系统。硫酸盐作为外源电子受体(SP),另一种不含外源电子受体(MP),两者均在室温下孵育。孵育2年以上后,MP和SP样品中分别降解了约48%和57.4%的棕榈酸酯。 MP和SP的甲烷产量分别达到1408和1064μmol。古细菌16S rRNA基因的克隆文库显示,硫酸盐改良培养物(SP)中主要的古细菌是甲烷菌,而甲烷藻在不添加外源硫酸盐(MP)的情况下占主导地位。该观察结果表明,在有或没有硫酸盐存在的情况下,棕榈酸酯都可以通过β-氧化和乙酰碎裂甲烷化作用而被生物降解为甲烷。在硫酸盐修饰的系统中甲烷甲烷藻的高发生率表明,添加硫酸盐不会抑制/几乎不影响乙酰碎屑甲烷生成。破骨细胞产甲烷作用可能是在用硫酸盐改良的富集培养物中甲烷生成的主要生物化学途径。这些结果揭示了在硫酸盐存在下的其他产甲烷途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号