...
首页> 外文期刊>Applied categorical structures >Proximity Frames and Regularization
【24h】

Proximity Frames and Regularization

机译:邻近框架和正则化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

It is well known that the category KHaus of compact Hausdorff spaces is dually equivalent to the category KRFrm of compact regular frames. By de Vries duality, KHaus is also dually equivalent to the category DeV of de Vries algebras, and so DeV is equivalent to KRFrm, where the latter equivalence can be described constructively through Booleanization. Our purpose here is to lift this circle of equivalences and dual equivalences to the setting of stably compact spaces. The dual equivalence of KHaus and KRFrm has a well-known generalization to a dual equivalence of the categories StKSp of stably compact spaces and StKFrm of stably compact frames. Here we give a common generalization of de Vries algebras and stably compact frames we call proximity frames. For the category PrFrm of proximity frames we introduce the notion of regularization that extends that of Booleanization. This yields the category RPrFrm of regular proximity frames. We show there are equivalences and dual equivalences among PrFrm, its subcategories StKFrm and RPrFrm, and StKSp. Restricting to the compact Hausdorff setting, the equivalences and dual equivalences among StKFrm, RPrFrm, and StKSp yield the known ones among KRFrm, DeV, and KHaus. The restriction of PrFrm to this setting provides a new category StrInc whose objects are frames with strong inclusions and whose morphisms and composition are generalizations of those in DeV. Both KRFrm and DeV are subcategories of StrInc that are equivalent to StrInc. For a compact Hausdorff space X, the category StrInc not only contains both the frame of open sets of X and the de Vries algebra of regular open sets of X, these two objects are isomorphic in StrInc, with the second being the regularization of the first. The restrictions of these categories are considered also in the setting of spectral spaces, Stone spaces, and extremally disconnected spaces.
机译:众所周知,紧凑型Hausdorff空间的KHaus类别与紧凑型规则框架的KRFrm类别双重对等。通过de Vries对偶性,KHaus也双重等同于de Vries代数的DeV类,因此DeV等同于KRFrm,后者的等效性可以通过布尔化来构造性地描述。我们在这里的目的是将等价和对等等价线提升到稳定紧凑空间的设置。 KHaus和KRFrm的对等对等具有对稳定紧凑空间的StKSp和稳定紧凑框架的StKFrm的对等对偶的众所周知的概括。在这里,我们对de Vries代数和稳定紧凑的框架(称为邻近框架)进行了一般化。对于邻近帧类别PrFrm,我们引入正则化的概念,该概念扩展了布尔化的概念。这将产生常规接近度框架的类别RPrFrm。我们显示PrFrm,其子类别StKFrm和RPrFrm以及StKSp之间存在对等和双重对等。限于紧凑的Hausdorff设置,StKFrm,RPrFrm和StKSp之间的等价和对等等价会在KRFrm,DeV和KHaus中产生已知值。 PrFrm对此设置的限制提供了一个新的类别StrInc,其对象是具有强包含性的帧,并且其形态和成分是DeV中对象的概括。 KRFrm和DeV都是StrInc的子类别,与StrInc等效。对于紧凑的Hausdorff空间X,类别StrInc不仅包含X的开放集的框架和X的正规开放集的de Vries代数,这两个对象在StrInc中是同构的,第二个是第一个的正则化。在频谱空间,Stone空间和极端不相连的空间的设置中也考虑了这些类别的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号