...
首页> 外文期刊>Antiviral Research >A computational chemistry perspective on the current status and future direction of hepatitis B antiviral drug discovery
【24h】

A computational chemistry perspective on the current status and future direction of hepatitis B antiviral drug discovery

机译:从化学计算角度看乙肝抗病毒药物发现的现状和未来方向

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Computational chemical biology, applied to research on hepatitis B virus (HBV), has two major branches: bioinformatics (statistical models) and first-principle methods (molecular physics). While bioinformatics focuses on statistical tools and biological databases, molecular physics uses mathematics and chemical theory to study the interactions of biomolecules. Three computational techniques most commonly used in HBV research are homology modeling, molecular docking, and molecular dynamics. Homology modeling is a computational simulation to predict protein structure and has been used to construct conformers of the viral polymerase (reverse transcriptase domain and RNase H domain) and the HBV X protein. Molecular docking is used to predict the most likely orientation of a ligand when it is bound to a protein, as well as determining an energy score of the docked conformation. Molecular dynamics is a simulation that analyzes biomolecule motions and determines conformation and stability patterns. All of these modeling techniques have aided in the understanding of resistance mutations on HBV non-nucleos(t)ide reverse-transcriptase inhibitor binding. Finally, bioinformatics can be used to study the DNA and RNA protein sequences of viruses to both analyze drug resistance and to genotype the viral genomes. Overall, with these techniques, and others, computational chemical biology is becoming more and more necessary in hepatitis B research. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B." (C) 2015 Elsevier B.V. All rights reserved.
机译:用于研究乙型肝炎病毒(HBV)的计算化学生物学有两个主要分支:生物信息学(统计模型)和第一性原理(分子物理学)。生物信息学的重点是统计工具和生物数据库,而分子物理学则使用数学和化学理论来研究生物分子的相互作用。 HBV研究中最常用的三种计算技术是同源性建模,分子对接和分子动力学。同源性建模是一种预测蛋白质结构的计算机模拟,已被用于构建病毒聚合酶(逆转录酶结构域和RNase H结构域)和HBV X蛋白的构象体。分子对接用于预测配体与蛋白质结合时最可能的取向,以及确定对接构象的能量得分。分子动力学是分析生物分子运动并确定构象和稳定性模式的模拟。所有这些建模技术都有助于理解HBV非核苷酸逆转录酶抑制剂结合的耐药性突变。最后,生物信息学可用于研究病毒的DNA和RNA蛋白序列,以分析耐药性和对病毒基因组进行基因分型。总体而言,利用这些技术以及其他技术,计算化学生物学在乙肝研究中变得越来越必要。本文是“未完成的故事:从发现澳大利亚抗原到开发新的治疗乙型肝炎的疗法”抗病毒研究研讨会的一部分。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号