...
首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >In-situ fabrication of supported iron oxides from synthetic acid mine drainage: High catalytic activities and good stabilities towards electro-Fenton reaction
【24h】

In-situ fabrication of supported iron oxides from synthetic acid mine drainage: High catalytic activities and good stabilities towards electro-Fenton reaction

机译:用合成酸性矿山排水原位制备负载型氧化铁:高催化活性和良好的电芬顿反应稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Acid mine drainage (AMD) contains a large amount of ferrous iron and the recovery of iron oxides from the AMD has been of extensive research interest. Here we report a novel air-cathode fuel cell strategy to in-situ utilize ferrous iron in the AMD for the fabrication of heterogeneous electro-Fenton catalysts. Three types of nano-structured iron oxide/graphite felt (GF) composites, including FeOOH/GF, Fe2O3/GF and Fe3O4/GF, were fabricated from a synthetic AMD and their catalytic activities towards the electro-Fenton reaction were evaluated at neutral pH with Rhodamine B (RhB) as a probe pollutant. The electro-Fenton system with GF cathode only removed 30 +/- 1.4% of RhB after 120 min of reaction. In comparison, RhB removal efficiencies were significantly improved to 62.5 +/- 2.0%, 95.4 +/- 0.9% and 95.6 +/- 0.7% when the FeOOH/GF, Fe2O3/GF and Fe3O4/GF composites were used as the cathodes, respectively. Among the three types of composites, the Fe3O4/GF exhibited the highest electro-Fenton catalytic activity whereas the lowest activity was observed for the FeOOH/GF. The decomposition of H2O2 on the iron oxides followed a completely surface-catalyzed mechanism in which the iron oxides maintained their structures without leaching of iron species. The air-cathode fuel cell technology has a potential for iron recovery from the AMD, and provides an effective way for fabricating heterogeneous electro-Fenton catalyst with high catalytic activity and good stability. (C) 2014 Elsevier BY. All rights reserved.
机译:酸性矿山排水(AMD)包含大量的亚铁,从AMD回收氧化铁已引起广泛的研究兴趣。在这里,我们报告了一种新颖的空气阴极燃料电池策略,用于在AMD中原位利用亚铁来制造非均相的电子芬顿催化剂。由合成AMD制备了三种类型的纳米结构的氧化铁/石墨毡(GF)复合材料,包括FeOOH / GF,Fe2O3 / GF和Fe3O4 / GF,并在中性pH下评估了它们对电子芬顿反应的催化活性以若丹明B(RhB)作为探针污染物。反应120分钟后,带有GF阴极的电子芬顿系统仅除去30 +/- 1.4%的RhB。相比之下,当FeOOH / GF,Fe2O3 / GF和Fe3O4 / GF复合材料用作阴极时,RhB的去除效率显着提高到62.5 +/- 2.0%,95.4 +/- 0.9%和95.6 +/- 0.7%,分别。在这三种类型的复合物中,Fe3O4 / GF表现出最高的电子芬顿催化活性,而FeOOH / GF的活性最低。 H2O2在氧化铁上的分解遵循完全表面催化的机制,其中氧化铁保持其结构而不浸出铁物种。空气阴极燃料电池技术具有从AMD回收铁的潜力,并为制造具有高催化活性和良好稳定性的非均相电子芬顿催化剂提供了有效的方法。 (C)2014 Elsevier BY。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号