...
首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation?-Implications of persistent toxic intermediates
【24h】

Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation?-Implications of persistent toxic intermediates

机译:可以在可见光下使用g-C3N4 / TiO2对环境药物进行光催化降解并使其在水中完全矿化吗?-持久性有毒中间体的意义

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This study investigated the feasibility of photocatalytic degradation and detoxification of antiviral pharmaceuticals using a novel graphitic carbon nitride (g-C3N4)/TiO2 hybrid photocatalyst under visible light irradiation. The results indicated that acyclovir is difficult to be mineralized, although it could be completely degraded within 90 min using this high stable hybrid photocatalyst. Further investigation found that three main intermediates (P1, P2, and P3) produced during the photocatalytic process remain persistent, due to the low oxidation potential of the highest occupied molecular orbital (HOMO) of g-C3N4. The acute and chronic toxicities of acyclovir and these three intermediates were assessed at three trophic levels with theoretical calculated data obtained by the "ecological structure-activity relationships" program. The results found that toxicities of two of the intermediates P1 and P2 were lower than the toxicity of acyclovir to three levels tested organisms. However, the aquatic toxicity of the third intermediate P3, guanine, was more than double that of acyclovir, although most toxicity values still fell in the same toxic class except for the chronic impact on daphnia (acyclovir is harmful, and the guanine intermediary is toxic): This study's findings support the selection of new photocatalysts for purifying and detoxifying. environmental pharmaceuticals in water. (C) 2015 Elsevier B.V. All rights reserved.
机译:这项研究调查了在可见光照射下使用新型石墨化碳氮化碳(g-C3N4)/ TiO2杂化光催化剂对抗病毒药物进行光催化降解和解毒的可行性。结果表明,阿昔洛韦难以矿化,尽管使用这种高度稳定的杂化光催化剂可以在90分钟内将其完全降解。进一步的研究发现,由于g-C3N4的最高占据分子轨道(HOMO)的氧化势低,在光催化过程中产生的三个主要中间体(P1,P2和P3)保持持久。使用“生态结构-活性关系”程序获得的理论计算数据,从三个营养水平评估了阿昔洛韦和这三种中间体的急性和慢性毒性。结果发现,中间体P1和P2中的两种对三类受试生物的毒性均低于阿昔洛韦的毒性。但是,第三种中间体P3鸟嘌呤的水生毒性是阿昔洛韦的两倍以上,尽管除了对水蚤的慢性影响外,大多数毒性值仍属于同一毒性类别(阿昔洛韦是有害的,鸟嘌呤中间体是有毒的)。 ):这项研究的发现支持选择用于净化和解毒的新型光催化剂。水中的环保药物。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号