...
首页> 外文期刊>Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications >Vanadium(III) and vanadium(IV) catalysts in a membrane reactor for benzene hydroxylation to phenol and study of membrane material resistance
【24h】

Vanadium(III) and vanadium(IV) catalysts in a membrane reactor for benzene hydroxylation to phenol and study of membrane material resistance

机译:膜反应器中的钒(III)和钒(IV)催化剂,用于苯羟基化为苯酚和研究膜材料的耐性

获取原文
获取原文并翻译 | 示例
           

摘要

Benzene hydroxylation to phenol by using vanadium based catalysts and product recovery were performed in a two-phase membrane reactor. Benzene permeates, through the hydrophobic polypropylene membrane, in the aqueous phase containing the catalyst while phenol permeates back accumulating in the organic phase. The following fundamental aspects have been studied: dose of hydrogen peroxide, initial oxidation states of vanadium catalysts, duration of catalytic tests and lifetime of the membrane in terms of physical and chemical resistance. It was observed that feeding the oxidant by a micro pump, working in the "bulk tube" mode, phenol yield, final phenol concentration in the organic phase, phenol turnover number and system productivity increased, and no tar was formed. Initial oxidation state of vanadium catalysts influenced system performance: indeed improved results in terms of yield (35.2% vs. 25.1%), conversion of hydrogen peroxide to phenol (36.6% vs. 25.9%), productivity (0.97 g g_(cat)~(-1) h~(-1) vs. 0.78 g g_(cat)~(-1) h~(-1)) were obtained by using vanadium(III) chloride compared to vanadium(IV) acetyl aceto-nate. Higher phenol extraction/recovery in the organic phase (61.1% vs. 46.3%) and then higher selectivity (97.5% vs. 92.8%) were obtained by increasing test duration from 270 to 510min. A weak membrane resistance was observed after 246 h of consecutive catalytic runs on the same membrane piece, showing degradation of the membrane material (polypropylene) caused by the OH~· radical generated in the reacting mixture.
机译:使用钒基催化剂将苯羟基化为苯酚,并在两相膜反应器中进行产物回收。苯通过疏水性聚丙烯膜渗透到含有催化剂的水相中,而苯酚则渗透回积累在有机相中。研究了以下基本方面:过氧化氢的剂量,钒催化剂的初始氧化态,催化测试的持续时间以及膜的物理和化学耐受性寿命。观察到通过微型泵进料氧化剂,以“批量管”模式工作,苯酚收率,有机相中的最终苯酚浓度,苯酚周转数和系统生产率增加,并且没有形成焦油。钒催化剂的初始氧化态影响了系统性能:确实提高了产率(35.2%对25.1%),过氧化氢转化为苯酚(36.6%对25.9%),生产率(0.97 g g(cat)〜)与乙酰丙酮钒(IV)相比,使用氯化钒(III)可获得(-1)h〜(-1)与0.78 g g_(cat)〜(-1)h〜(-1))。通过将测试时间从270分钟增加到510分钟,有机相中的苯酚提取/回收率更高(61.1%对46.3%),然后选择性更高(97.5%对92.8%)。在同一个膜片上连续催化运行246小时后,观察到较弱的膜阻力,表明反应混合物中产生的OH〜·自由基导致膜材料(聚丙烯)降解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号