...
首页> 外文期刊>Blood purification >Analysis of urea nitrogen and creatinine kinetics in hemodialysis: comparison of a variable-volume two-compartment model with a regional blood flow model and investigation of an appropriate solute kinetics model for clinical application.
【24h】

Analysis of urea nitrogen and creatinine kinetics in hemodialysis: comparison of a variable-volume two-compartment model with a regional blood flow model and investigation of an appropriate solute kinetics model for clinical application.

机译:血液透析中尿素氮和肌酐动力学的分析:可变容积两室模型与区域血流模型的比较,并研究适合临床应用的溶质动力学模型。

获取原文
获取原文并翻译 | 示例
           

摘要

To investigate an appropriate solute kinetics model for clinical application, we analyzed urea nitrogen (UN) and creatinine (Cr) kinetics by a variable-volume two-compartmental model (2CM) and a regional blood flow model (RBF) in 44 hemodialysis patients with varying proportions of first compartmental volume and regional volume (p(1)). Solute kinetics could not be solved in some of the patients with higher p(1) values, and there were more solution failures by the RBF than by the 2CM. The solute generation rate (g) and solute distribution volume in the dry state (V(D)) increased with increases in p(1) in both models, but there were some differences between the two models. When g was normalized by V(D), it became relatively constant, irrespective of the p(1) value or model used (0.133 +/- 0.029 mg/min/l by the 2CM and 0.132 +/- 0.029 mg/min/l by the RBF for UN; 0.0200 +/- 0.0049 mg/min/l by the 2CM and 0.0198 +/- 0.0048 mg/min/l by the RBF for Cr). The intercompartmental mass transfer coefficient (K(c); liters/min) calculated by the 2CM decreased as p(1) increased (K(c) = -1.77.p(1) + 1.16, p < 0.0001, R = 0.999 for UN; K(c) = -0.847.p(1) + 0.556, p < 0.0001, R = 1.000 for Cr). The systemic blood flow (Q(sys); liters/min) calculated by the RBF also decreased as p(1) increased (Q(sys) = -11.1.p(1) + 6.21, p < 0.0005, R = 1.000 for UN; Q(sys) = -5.22.p(1) + 2.90, p < 0.001, R = 0.999 for Cr). Since the RBF more frequently failed to solve the solute kinetics and since there was a difference in its Q(sys) values for UN and Cr, the 2CM was considered to be a superior model. When p(1) was extremely low, the 2CM could be transformed into a modified variable-volume one-compartment model (1CM) which presented a similar g/V(D) (0.133 +/- 0.029 for UN; 0.0200 +/- 0.0048 for Cr). This modified 1CM was considered to satisfy appropriate conditions for clinical application, since it is simpler than the 2CM and provides useful information on the dialysis dose. Copyright 2000 S. Karger AG, Basel
机译:为了研究适合临床应用的溶质动力学模型,我们通过可变容积两室模型(2CM)和区域血流模型(RBF)分析了44例血液透析患者的尿素氮(UN)和肌酐(Cr)动力学。第一隔室容积和区域容积的不同比例(p(1))。在某些具有较高p(1)值的患者中无法解决溶质动力学,并且RBF的溶栓失败率高于2CM。在两个模型中,溶质的产生速率(g)和干燥状态下的溶质分布体积(V(D))随p(1)的增加而增加,但是两个模型之间存在一些差异。当g通过V(D)归一化时,它变得相对恒定,而与所使用的p(1)值或模型无关(2CM为0.133 +/- 0.029 mg / min / l和0.132 +/- 0.029 mg / min /对于UN,则为RBF;对于2CM,为RBF,则为0.0200 +/- 0.0049 mg / min / l;对于Cr,为RBF,则为0.0198 +/- 0.0048 mg / min / l。当p(1)增加时,由2CM计算的室间传质系数(K(c);升/分钟)随p(1)的增加而降低(K(c)= -1.77.p(1)+ 1.16,p <0.0001,R = 0.999 UN; K(c)= -0.847.p(1)+ 0.556,p <0.0001,对于Cr,R = 1.000)。 RBF计算得出的全身血流量(Q(sys);升/分钟)也随着p(1)的增加而降低(Q(sys)= -11.1.p(1)+ 6.21,p <0.0005,R = 1.000 UN; Q(sys)= -5.22.p(1)+ 2.90,p <0.001,对于Cr,R = 0.999。由于RBF更经常无法解决溶质动力学,并且由于UN和Cr的Q(sys)值存在差异,因此2CM被认为是更好的模型。当p(1)非常低时,可以将2CM转换为修改后的可变容积一室模型(1CM),该模型表现出相似的g / V(D)(UN为0.133 +/- 0.029; 0.0200 +/- Cr为0.0048)。这种改良的1CM被认为满足临床应用的适当条件,因为它比2CM更简单,并且提供了有关透析剂量的有用信息。版权所有2000 S. Karger AG,巴塞尔

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号