首页> 外文期刊>The Journal of Chemical Physics >Transition states, reaction paths, and thermochemistry using the nuclear-electronic orbital analytic Hessian
【24h】

Transition states, reaction paths, and thermochemistry using the nuclear-electronic orbital analytic Hessian

机译:过渡状态,反应路径和热化学使用核电轨道分析Hessian

获取原文
获取原文并翻译 | 示例
           

摘要

The nuclear-electronic orbital (NEO) method is a multicomponent quantum chemistry theory that describes electronic and nuclear quantum effects simultaneously while avoiding the Born-Oppenheimer approximation for certain nuclei. Typically specified hydrogen nuclei are treated quantum mechanically at the same level as the electrons, and the NEO potential energy surface depends on the classical nuclear coordinates. This approach includes nuclear quantum effects such as zero-point energy and nuclear delocalization directly into the potential energy surface. An extended NEO potential energy surface depending on the expectation values of the quantum nuclei incorporates coupling between the quantum and classical nuclei. Herein, theoretical methodology is developed to optimize and characterize stationary points on the standard or extended NEO potential energy surface, to generate the NEO minimum energy path from a transition state down to the corresponding reactant and product, and to compute thermochemical properties. For this purpose, the analytic coordinate Hessian is developed and implemented at the NEO Hartree-Fock level of theory. These NEO Hessians are used to study the S(N)2 reaction of ClCH3Cl- and the hydride transfer of C4H9+. For each system, analysis of the single imaginary mode at the transition state and the intrinsic reaction coordinate along the minimum energy path identifies the dominant nuclear motions driving the chemical reaction. Visualization of the electronic and protonic orbitals along the minimum energy path illustrates the coupled electronic and protonic motions beyond the Born-Oppenheimer approximation. This work provides the foundation for applying the NEO approach at various correlated levels of theory to a wide range of chemical reactions.
机译:核电子轨道(NEO)方法是一种多组分量子化学理论,它同时描述了电子和核的量子效应,同时避免了某些核的玻恩-奥本海默近似。通常,特定的氢原子核在与电子相同的水平上进行量子力学处理,新势能面取决于经典核坐标。这种方法包括核量子效应,如零点能和直接进入势能面的核离域。根据量子核的期望值,一个扩展的新势能面包含了量子核和经典核之间的耦合。本文提出了一种理论方法,用于优化和表征标准或扩展NEO势能面上的固定点,生成从过渡态到相应反应物和产物的NEO最小能量路径,并计算热化学性质。为此,在新哈特里-福克理论水平上开发并实现了分析坐标Hessian。这些新黑森人用于研究ClCH3Cl-的S(N)2反应和C4H9+的氢化物转移。对于每个系统,对过渡态的单虚模和沿最小能量路径的本征反应坐标的分析确定了驱动化学反应的主要核运动。沿着最小能量路径的电子和质子轨道的可视化显示了超出Born-Oppenheimer近似的电子和质子耦合运动。这项工作为将新方法应用于各种相关理论水平到广泛的化学反应提供了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号