首页> 美国卫生研究院文献>ChemistryOpen >The Thermochemistry of London Dispersion-Driven Transition Metal Reactions: Getting the ‘Right Answer for the Right Reason’
【2h】

The Thermochemistry of London Dispersion-Driven Transition Metal Reactions: Getting the ‘Right Answer for the Right Reason’

机译:伦敦由分散驱动的过渡金属反应的热化学:获得正确原因的正确答案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reliable thermochemical measurements and theoretical predictions for reactions involving large transition metal complexes in which long-range intramolecular London dispersion interactions contribute significantly to their stabilization are still a challenge, particularly for reactions in solution. As an illustrative and chemically important example, two reactions are investigated where a large dipalladium complex is quenched by bulky phosphane ligands (triphenylphosphane and tricyclohexylphosphane). Reaction enthalpies and Gibbs free energies were measured by isotherm titration calorimetry (ITC) and theoretically ‘back-corrected’ to yield 0 K gas-phase reaction energies (ΔE). It is shown that the Gibbs free solvation energy calculated with continuum models represents the largest source of error in theoretical thermochemistry protocols. The (‘back-corrected’) experimental reaction energies were used to benchmark (dispersion-corrected) density functional and wave function theory methods. Particularly, we investigated whether the atom-pairwise D3 dispersion correction is also accurate for transition metal chemistry, and how accurately recently developed local coupled-cluster methods describe the important long-range electron correlation contributions. Both, modern dispersion-corrected density functions (e.g., PW6B95-D3(BJ) or B3LYP-NL), as well as the now possible DLPNO-CCSD(T) calculations, are within the ‘experimental’ gas phase reference value. The remaining uncertainties of 2–3 kcal mol−1 can be essentially attributed to the solvation models. Hence, the future for accurate theoretical thermochemistry of large transition metal reactions in solution is very promising.
机译:对于涉及大型过渡金属配合物的反应的可靠热化学测量和理论预测仍然是一个挑战,特别是对于溶液中的反应,其中大范围的分子内伦敦分散体相互作用对它们的稳定化有很大贡献。作为说明性和化学上重要的例子,研究了两个反应,其中大的二钯配合物被庞大的膦配体(三苯基膦和三环己基膦)淬灭。反应焓和吉布斯自由能通过等温滴定量热法(ITC)进行测量,并在理论上进行“反修正”以产生0 K气相反应能(ΔE)。结果表明,用连续模型计算的吉布斯自由溶剂化能代表理论热化学方案中最大的误差来源。 (“反向校正”)实验反应能被用作基准(分散校正)密度泛函和波动函数理论方法。特别是,我们研究了原子对D3色散校正对于过渡金属化学是否也准确,以及最近开发的局部耦合簇方法如何准确地描述了重要的远程电子相关性贡献。现代的色散校正密度函数(例如PW6B95-D3(BJ)或B3LYP-NL)以及现在可能的DLPNO-CCSD(T)计算都在“实验”气相参考值之内。 2-3 kcal mol -1 的其余不确定性基本上可以归因于溶剂化模型。因此,溶液中大过渡金属反应的精确理论热化学的未来非常有前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号