首页> 外文期刊>ACS applied materials & interfaces >Microscopic and Macroscopic Characterization of Grain Boundary Energy and Strength in Silicon Carbide via Machine-Learning Techniques
【24h】

Microscopic and Macroscopic Characterization of Grain Boundary Energy and Strength in Silicon Carbide via Machine-Learning Techniques

机译:通过机器学习技术微观和致晶晶界能量和强度的宏观表征

获取原文
获取原文并翻译 | 示例
       

摘要

Predicting the properties of grain boundaries poses a challenge because of the complex relationships between structural and chemical attributes both at the atomic and continuum scales. Grain boundary systems are typically characterized by parameters used to classify local atomic arrangements in order to extract features such as grain boundary energy or grain boundary strength. The present work utilizes a combination of high-throughput atomistic simulations, macroscopic and microscopic descriptors, and machine-learning techniques to characterize the energy and strength of silicon carbide grain boundaries. A diverse data set of symmetric tilt and twist grain boundaries are described using macroscopic metrics such as misorientation, the alignment of critical low-index planes, and the Schmid factor, but also in terms of microscopic metrics, by quantifying the local atomic structure and chemistry at the interface. These descriptors are used to create random-forest regression models, allowing for their relative importance to the grain boundary energy and decohesion stress to be better understood. Results show that while the energetics of the grain boundary were best described using the microscopic descriptors, the ability of the macroscopic descriptors to reasonably predict grain boundaries with low energy suggests a link between the crystallographic orientation and the resultant atomic structure that forms at the grain boundary within this regime. For grain boundary strength, neither microscopic nor macroscopic descriptors were able to fully capture the response individually. However, when both descriptor sets were utilized, the decohesion stress of the grain boundary could be accurately predicted. These results highlight the importance of considering both macroscopic and microscopic factors when constructing constitutive models for grain boundary systems, which has significant implications for both understanding the fundamental mechanisms at work and the ability to bridge length scales.
机译:由于结构和化学属性在原子和连续介质尺度上的复杂关系,预测晶界的性质是一个挑战。晶界系统的特征通常是用于对局部原子排列进行分类的参数,以便提取晶界能量或晶界强度等特征。本研究利用高通量原子模拟、宏观和微观描述符以及机器学习技术来表征碳化硅晶界的能量和强度。对称倾斜和扭曲晶界的各种数据集使用宏观指标(如取向错误、临界低折射率平面的对齐和施密德因子)进行描述,但也使用微观指标,通过量化界面处的局部原子结构和化学性质。这些描述符用于创建随机森林回归模型,以便更好地理解它们对晶界能量和脱粘应力的相对重要性。结果表明,虽然用微观描述符最好地描述了晶界的能量学,但宏观描述符合理预测低能晶界的能力表明,晶体取向与在该区域内晶界形成的合成原子结构之间存在联系。对于晶界强度,无论是微观还是宏观描述符都无法单独完全捕捉到响应。然而,当使用这两个描述符集时,可以准确预测晶界的脱粘应力。这些结果强调了在构建晶界系统本构模型时同时考虑宏观和微观因素的重要性,这对于理解工作中的基本机制和桥接长度尺度的能力都具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号