...
首页> 外文期刊>Journal of Applied Phycology >Sugaring-out: a novel sample preparation method for determination of fucoxanthin in Icelandic edible seaweeds
【24h】

Sugaring-out: a novel sample preparation method for determination of fucoxanthin in Icelandic edible seaweeds

机译:糖化:一种新型样品制备方法,用于测定冰岛食用海藻中的岩藻素

获取原文
获取原文并翻译 | 示例
           

摘要

Fucoxanthin is an oxygenated carotenoid with a broad spectrum of bioactivities, ranging from antioxidant activity to antimicrobial activities. Micro-algae are well-recognized resources for their production of fucoxanthin, which can be enhanced by cell culture and genetic engineering, and macro-algae or seaweeds are readily available natural resources for harvesting and fucoxanthin purification. Prior sample preparation methods from macro-alga matrix are tedious and time-consuming, usually involving repetitive chromatographic purification of fucoxanthin from co-extracted compounds, such as phlorotannins. This study focused on five Icelandic edible seaweeds and reported a novel sample preparation method-sugaring-out for the HPLC analysis of fucoxanthin. We aimed to determine fucoxanthin contents in Icelandic edible seaweeds and to evaluate the effects of drying process on fucoxanthin contents. An aqueous acetonitrile model system was developed to visualize fucoxanthin partition and to select optimal conditions for partition. Glucose was added to trigger phase separation. The highest yield of fucoxanthin was found when it is mixed with 70 mg mL(-1) glucose. Among three edible dry seaweeds sold in Icelandic food market, fucoxanthin was detected only in sugar kelp (18.76-38.13 mu g g(-1) d.w.). Fresh brown algae can be good alternative sources of fucoxanthin (177.74-227.39 mu g g(-1) d.w. in Ascophyllum nodosum and 120.39-147.86 mu g g(-1) d.w. in Fucus vesiculosus). Seaweed freshness is critical for fucoxanthin extraction, as post-harvest drying process with light and air exposure can cause approximately 70-90% loss of fucoxanthin after a 4-week drying process.
机译:岩藻黄质是一种含氧类胡萝卜素,具有广泛的生物活性,从抗氧化活性到抗菌活性。微藻是公认的生产岩藻红素的资源,可以通过细胞培养和基因工程来增强,而大型藻类或海藻是易于获取的自然资源,可用于收获和纯化岩藻红素。以前从大型藻类基质中制备样品的方法繁琐且耗时,通常涉及从共同提取的化合物(如间苯三酚)中重复色谱纯化岩藻红素。本研究以五种冰岛食用海藻为研究对象,报道了一种新的样品制备方法,用于岩藻黄质的HPLC分析。我们旨在测定冰岛食用海藻中的岩藻红素含量,并评估干燥过程对岩藻红素含量的影响。建立了一个水-乙腈模型系统,以可视化岩藻黄质的分配,并选择最佳的分配条件。加入葡萄糖以触发相分离。当岩藻黄质与70 mg-mL(-1)葡萄糖混合时,其产量最高。在冰岛食品市场出售的三种可食用干海藻中,仅在糖带(18.76-38.13μg(-1)d.w.)中检测到岩藻黄质。新鲜褐藻是岩藻红素的良好替代来源(子囊藻为177.74-227.39μg(-1)d.w.,水泡藻为120.39-147.86μg(-1)d.w.)。海藻的新鲜度对岩藻黄质的提取至关重要,因为采摘后的光照和空气暴露干燥过程在干燥4周后可能会导致岩藻黄质损失约70-90%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号