首页> 外文期刊>Journal of Computational Physics >A cell-centered indirect Arbitrary-Lagrangian-Eulerian discontinuous Galerkin scheme on moving unstructured triangular meshes with topological adaptability
【24h】

A cell-centered indirect Arbitrary-Lagrangian-Eulerian discontinuous Galerkin scheme on moving unstructured triangular meshes with topological adaptability

机译:以拓扑适应性移动非结构化三角网格的细胞为中心间接武术 - 拉格朗日 - 欧拉不连续的Galerkin方案

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we present a novel cell-centered indirect Arbitrary-Lagrangian-Eulerian (ALE) discontinuous Galerkin (DG) scheme on moving unstructured triangular meshes with mesh topological adaptability, aiming to deal with the strong distortions and large deformation flow problems. The scheme combines the explicit time marching Lagrangian DG methodology with the adaptive mesh topology optimization technique. The scheme consists of the following three steps. Firstly, we utilize the Runge-Kutta DG method to solve the compressible Euler equation in Lagrangian framework, and employ a nodal solver to obtain the nodal velocity and numerical fluxes across element boundaries. The physical variable and nodal position are updated in this step. Secondly, the adaptive mesh topology optimization technique, which includes the mesh refinement, edge collapse operation and mesh regularization, is implemented to eliminate the highly distorted elements and improve the mesh quality. Thirdly, the conservative remapping algorithm is employed, which can maintain the conservative interpolation of the Lagrangian solution onto the remeshed grid. The present indirect ALE DG scheme can ensure the high quality of the mesh by optimizing the topology connectivity, so that the present scheme can successfully simulate complex vortical flow problems for a sufficient simulation time. Due to the inherent Lagrangian nature, the present scheme can naturally track the multimaterial flow interface, rather than using algorithms with interface reconstruction or diffuse interfaces. The scheme is validated with several benchmark flow problems. It is demonstrated that the present indirect ALE DG scheme with topological adaptability can accurately simulate flow problems with large fluid deformations and distortions. It can achieve remarkable improvements compared with the conventional Lagrangian DG method with fixed topological connectivity. (C) 2021 Elsevier Inc. All rights reserved.
机译:在本文中,我们提出了一种新的以单元为中心的间接任意拉格朗日-欧拉(ALE)间断伽辽金(DG)格式,该格式基于具有网格拓扑适应性的移动非结构三角形网格,旨在处理强畸变和大变形流动问题。该方案将显式时间推进拉格朗日DG方法与自适应网格拓扑优化技术相结合。该方案包括以下三个步骤。首先,我们使用龙格-库塔DG方法在拉格朗日框架下求解可压缩欧拉方程,并使用节点求解器获得节点速度和单元边界的数值通量。物理变量和节点位置在此步骤中更新。其次,采用自适应网格拓扑优化技术,包括网格细化、边折叠操作和网格正则化,以消除高度扭曲的单元,提高网格质量。第三,采用保守性重映射算法,该算法可以保持拉格朗日解在重映射网格上的保守性插值。本文提出的间接ALE-DG方法通过优化拓扑连通性来保证网格的高质量,从而使该方法能够在足够的模拟时间内成功地模拟复杂的涡流问题。由于固有的拉格朗日性质,本方案可以自然地跟踪多材料流界面,而不是使用具有界面重建或扩散界面的算法。该方案通过几个基准流问题进行了验证。结果表明,本文提出的具有拓扑适应性的间接ALE-DG格式能够准确地模拟流体大变形和畸变的流动问题。与固定拓扑连通度的传统拉格朗日DG方法相比,该方法可以取得显著的改进。(c)2021爱思唯尔公司保留所有权利。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号