...
首页> 外文期刊>Journal of combinatorics and number theory >Eisenstein Series and the Theta Functions of the borweins
【24h】

Eisenstein Series and the Theta Functions of the borweins

机译:Eisenstein系列和Borweins的Theta功能

获取原文
获取原文并翻译 | 示例
           

摘要

Let q ∈ C satisfy |q| < 1, B_n (n = 0,1,2, ...) denote the nth Bernoulli number, G_(2n) (n = 0,1,2, ...) denote the (modified) Glaisher numbers defined by 3/(2+4 cosh t) =∑_(k=0)~∞ G_(2k) (t~(2k))/((2k)!), t ∈ C, |t| < (2π)/3, and for d ∈ Z ((-3)/d) = {1 if d ≡ 1 (mod 3), -1 id ≡ 2 (mod 3), 0 if d ≡ 0 (mod 3). Borwein and Borwein [5, pp. 695-696] defined the two-dimensional theta functions a(q) and b(q) by a(q):= ∑ q~(x~2+xy+y~2), b(q) : = ∑ ω~(x-y) q~(x~2+xy+y~2), where ω = e~(2πi/3), and (with Garvan) developed their properties in. In this paper we use a theorem of Alaca, Alaca, McAfee and Williams, which expresses a product of Lambert series as a Lambert series, to show that the Eisenstein series R_k(q):= (G_(2k)/3) + ∑_(n=1)~∞ (∑_(d|n)((-3)/d) d~2k)q~n, k = 0,1, 2,..., can be expressed in the form R_k(q):= ∑_(j=1)~k r(k,j)a~(2k+1-3j)(q)b~(3j)(q), r(k,j) ∈ Q, for k ≥ 1, and we give an explicit recurrence relation for the rational numbers r(k,j), see Theorem 1.5. This theorem extends and makes explicit a result of Cooper [8] proved by a different method. The key to this result is the identity ∑_(k=0)~n (2n/2k)R_k(q)R_(n-k)(q)+R_0(q)R_n(q) = 1/6 (E_(n+1)(q) - 3~(2n+2)E_(n+1)(q~3)), valid for n = 1, 2, 3, ...; see Theorem 1.4. This identity gives a new convolution sum identity for the arithmetic function ∑_(d|n)((-3)/d)d~(2k).
机译:让q∈ C满足| q |<1,B|n(n=0,1,2,…)表示第n个伯努利数,G_2n(n=0,1,2,…)表示由3/(2+4 cosh t)定义的(修改的)Glaisher数=∑_(k=0)~∞ G_2k(t~(2k))/(2k),T∈ C、 |t |<(2π)/3,对于d∈ Z(-3)/d)={1如果d≡ 1个(mod 3),-1个id≡ 2(模块3),如果为d,则为0≡ 0(mod 3)。Borwein和Borwein[5,第695-696页]通过a(q)定义了二维θ函数a(q)和b(q):=∑ q~(x~2+xy+y~2),b(q):=∑ ω~(x-y)q~(x~2+xy+y~2),其中ω=e~(2πi/3),和(与Garvan一起)在年发展了它们的性质。本文利用Alaca、Alaca、McAfee和Williams的一个定理,将Lambert级数的乘积表示为Lambert级数,证明了Eisenstein级数R_k(q):=(G_(2k)/3+∑_(n=1)~∞ (∑_(d | n)(-3)/d)d~2k)q~n,k=0,1,2,。。。,可以用R_k(q)的形式表示:∑_(j=1)~kr(k,j)a~(2k+1-3j)(q)b~(3j)(q),r(k,j)∈ Q、 为了k≥ 我们给出了有理数r(k,j)的显式递推关系,见定理1.5。这个定理扩展了库珀[8]的一个结果,并用另一种方法证明了这个结果。这个结果的关键是身份∑_(k=0)~n(2n/2k)R_k(q)R_(n-k)(q)+R_0(q)R_n(q)=1/6(E_(n+1)(q)-3~(2n+2)E_(n+1)(q~3)),对n=1,2,3。。。;见定理1.4。这个恒等式为算术函数提供了一个新的卷积和恒等式∑_(d|n)(-3)/d)d~(2k)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号