...
首页> 外文期刊>Journal of combinatorics and number theory >Eisenstein Series and the Theta Functions of the borweins
【24h】

Eisenstein Series and the Theta Functions of the borweins

机译:Eisenstein系列和Borweins的Theta功能

获取原文
获取原文并翻译 | 示例
           

摘要

Let q ∈ C satisfy |q| < 1, B_n (n = 0,1,2, ...) denote the nth Bernoulli number, G_(2n) (n = 0,1,2, ...) denote the (modified) Glaisher numbers defined by 3/(2+4 cosh t) =∑_(k=0)~∞ G_(2k) (t~(2k))/((2k)!), t ∈ C, |t| < (2π)/3, and for d ∈ Z ((-3)/d) = {1 if d ≡ 1 (mod 3), -1 id ≡ 2 (mod 3), 0 if d ≡ 0 (mod 3). Borwein and Borwein [5, pp. 695-696] defined the two-dimensional theta functions a(q) and b(q) by a(q):= ∑ q~(x~2+xy+y~2), b(q) : = ∑ ω~(x-y) q~(x~2+xy+y~2), where ω = e~(2πi/3), and (with Garvan) developed their properties in. In this paper we use a theorem of Alaca, Alaca, McAfee and Williams, which expresses a product of Lambert series as a Lambert series, to show that the Eisenstein series R_k(q):= (G_(2k)/3) + ∑_(n=1)~∞ (∑_(d|n)((-3)/d) d~2k)q~n, k = 0,1, 2,..., can be expressed in the form R_k(q):= ∑_(j=1)~k r(k,j)a~(2k+1-3j)(q)b~(3j)(q), r(k,j) ∈ Q, for k ≥ 1, and we give an explicit recurrence relation for the rational numbers r(k,j), see Theorem 1.5. This theorem extends and makes explicit a result of Cooper [8] proved by a different method. The key to this result is the identity ∑_(k=0)~n (2n/2k)R_k(q)R_(n-k)(q)+R_0(q)R_n(q) = 1/6 (E_(n+1)(q) - 3~(2n+2)E_(n+1)(q~3)), valid for n = 1, 2, 3, ...; see Theorem 1.4. This identity gives a new convolution sum identity for the arithmetic function ∑_(d|n)((-3)/d)d~(2k).
机译:让Q∈C满足| Q | <1,b_n(n = 0,1,2,...)表示nth bernoulli号码,g_(2n)(n = 0,1,2,......)表示由3定义的(修改的)Glaisher编号/(2 + 4 cosh t)=σ_(k = 0)〜∞g_(2k)(t〜(2k))/((2k)!),t∈c,| t | t | <(2π)/ 3,以及D∈z((-3)/ d)= {1,如果d≥1(mod 3),-1 id≡2(mod 3),则为d≠0(mod 3 )。 Borwein和Borwein [5,pp.695-696]定义了二维θ功能a(q)和b(q)由a(q):=σq〜(x〜2 + xy + y〜2), b(q):=σω〜(xy)q〜(x〜2 + xy + y〜2),其中ω= e〜(2πi/ 3),(用garvan)开发了它们的性质。在本文中我们使用Alaca,Alaca,McAfee和Williams的定理,它表达了Lambert系列作为Lambert系列的产品,以表明Eisenstein系列R_K(Q):=(G_(2k)/ 3)+σ_(n = 1)〜∞(Σ_(d | n)(( - 3)/ d)d〜2k)q〜n,k = 0,1,2,......,可以以形式的形式表达(q ):=Σ_(j = 1)〜kr(k,j)a〜(2k + 1-3j)(q)b〜(3j)(q),r(k,j)q q,用于k≥ 1,并为Rational Number R(k,j)提供显式复发关系,参见定理1.5。本定理扩展并通过不同方法证明了Cooper [8]的明确结果。此结果的关键是标识Σ_(k = 0)〜n(2n / 2k)r_k(q)r_(q)r_(q)+ r_0(q)r_n(q)= 1/6(e_(n +1)(q) - 3〜(2n + 2)e_(n + 1)(q〜3)),适用于n = 1,2,3,......;见定理1.4。该标识为算术函数σ_(d | n)(( - 3)/ d)d〜(2k)提供了新的卷积和标识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号