首页> 外文期刊>Journal of chemical theory and computation: JCTC >Determining Partial Atomic Charges for Liquid Water: Assessing Electronic Structure and Charge Models
【24h】

Determining Partial Atomic Charges for Liquid Water: Assessing Electronic Structure and Charge Models

机译:确定液态水的局部原子电荷:评估电子结构和电荷模型

获取原文
获取原文并翻译 | 示例
           

摘要

Partial atomic charges provide an intuitive and efficient way to describe the charge distribution and the resulting intermolecular electrostatic interactions in liquid water. Many charge models exist and it is unclear which model provides the best assignment of partial atomic charges in response to the local molecular environment. In this work, we systematically scrutinize various electronic structure methods and charge models (Mulliken, natural population analysis, CHelpG, RESP, Hirshfeld, Iterative Hirshfeld, and Bader) by evaluating their performance in predicting the dipole moments of isolated water, water clusters, and liquid water as well as charge transfer in the water dimer and liquid water. Although none of the seven charge models is capable of fully capturing the dipole moment increase from isolated water (1.85 D) to liquid water (about 2.9 D), the Iterative Hirshfeld method performs best for liquid water, reproducing its experimental average molecular dipole moment, yielding a reasonable amount of intermolecular charge transfer, and showing modest sensitivity to the local water environment. The performance of the charge model is dependent on the choice of the density functional and the quantum treatment of the environment. The computed molecular dipole moment of water generally increases with the percentage of the exact Hartree–Fock exchange in the functional, whereas the amount of charge transfer between molecules decreases. For liquid water, including two full solvation shells of surrounding water molecules (within about 5.5 ? of the central water) in the quantum chemical calculation converges the charges of the central water molecule. Our final pragmatic quantum chemical charge-assigning protocol for liquid water is the Iterative Hirshfeld method with M06-HF/aug-cc-pVDZ and a quantum region cutoff radius of 5.5 ?.
机译:部分原子电荷为描述液态水中的电荷分布和由此产生的分子间静电相互作用提供了一种直观而有效的方法。存在许多电荷模型,目前尚不清楚哪个模型提供了局部分子环境中部分原子电荷的最佳分配。在这项工作中,我们通过评估各种电子结构方法和电荷模型(Mulliken、自然布居分析、CHelpG、RESP、Hirshfeld、迭代Hirshfeld和Bader)在预测孤立水、水团簇和液态水的偶极矩以及水二聚体和液态水中的电荷转移方面的性能,系统地研究了它们。虽然七种电荷模型都不能完全捕捉从孤立水(1.85 D)到液态水(约2.9 D)的偶极矩增加,但迭代Hirshfeld方法对液态水表现最好,重现了其实验平均分子偶极矩,产生了合理的分子间电荷转移量,并对当地的水环境表现出适度的敏感性。电荷模型的性能取决于密度泛函的选择和环境的量子处理。计算得到的水分子偶极矩通常随着泛函中精确Hartree–Fock交换的百分比增加,而分子间的电荷转移量减少。对于液态水,包括周围水分子的两个完整溶剂化壳(在距离中心水约5.5°的范围内),量子化学计算会收敛中心水分子的电荷。我们最后一个实用的液态水量子化学电荷分配协议是迭代Hirshfeld方法,使用M06-HF/aug-cc pVDZ,量子区截止半径为5.5°?。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号