首页> 外文期刊>Transactions of the ASABE >Predicting Quality and Yield of Growing Alfalfa from a UAV
【24h】

Predicting Quality and Yield of Growing Alfalfa from a UAV

机译:从无人机中预测生长苜蓿的质量和产量

获取原文
获取原文并翻译 | 示例
           

摘要

Alfalfa producers would be able to manage their crop production practices better if they knew the distribution of yield and nutritive values of the alfalfa growing throughout their fields. Unmanned aerial vehicles (UAVs) equipped with cameras and photogrammetry techniques provide methods to quickly capture the plant canopy structure at field scale. The goal of this study was to determine how to use the point clouds produced by the photogrammetry process to estimate the yield and nutritive value of alfalfa throughout its growth cycle. During the 2017 growing season, weekly measurements were taken of 1 m~2 quadrats (approx 20 per week, 325 total) in a field of alfalfa managed for forage production. Measurements in each quadrat included manual measurements of maximum and average height, weed presence, disease damage, insect damage, maturity level, stand plant density, and many images of the quadrat from a UAV. After processing to remove outliers, the canopy heights from the photogrammetry point cloudswere largely Gaussian distributions. Models were developed using supervised machine learning to estimate yield and nutritive values, including acid detergent fiber (ADF), neutral detergent fiber (NDF), and crude protein (CP), with different numbers of predictor (input) variables. Simple models with two predictor variables were only based on the mean and standard deviation of the heights of the photogrammetry point cloud. The models with three predictor variables added average field maturity level. Finally, the models with six predictor variables added weed presence, insect damage, and disease damage. A linear regression with all interaction terms was found to be the best type of model for predicting yield with six variables. For all other outputs andnumbers of predictor variables, a Gaussian random process (GRP) model was best. The models improved with additional predictor variables, so the six-variable models were best able to predict yield and nutritive value. The R2 values for the six-variable models for predicting yield, ADF, NDF, and CP were 0.81, 0.81, 0.78, and 0.79, respectively.
机译:如果紫花苜蓿生产者了解其种植的紫花苜蓿的产量分布和营养价值,他们将能够更好地管理其作物生产实践。配备摄像头和摄影测量技术的无人机(UAV)提供了在野外规模快速捕捉植物冠层结构的方法。本研究的目的是确定如何使用摄影测量过程中产生的点云来估计苜蓿在整个生长周期中的产量和营养价值。在2017年的生长季节,每周在一块管理用于饲料生产的苜蓿地中测量1 m~2样方(每周约20块,共计325块)。每个样方的测量包括手动测量最大和平均高度、杂草存在、疾病损害、昆虫损害、成熟度水平、林分植物密度,以及无人机上样方的许多图像。经过处理去除异常值后,摄影测量点云的冠层高度基本上是高斯分布。使用有监督机器学习开发模型,以估计产量和营养价值,包括酸性洗涤纤维(ADF)、中性洗涤纤维(NDF)和粗蛋白质(CP),以及不同数量的预测(输入)变量。带有两个预测变量的简单模型仅基于摄影测量点云高度的平均值和标准偏差。具有三个预测变量的模型增加了平均油田成熟度水平。最后,具有六个预测变量的模型添加了杂草存在、昆虫危害和疾病危害。所有交互作用项的线性回归被发现是预测六个变量产量的最佳模型。对于所有其他输出和预测变量的数量,高斯随机过程(GRP)模型是最好的。模型通过增加预测变量进行了改进,因此六变量模型最能预测产量和营养价值。用于预测产量、ADF、NDF和CP的六个变量模型的R2值分别为0.81、0.81、0.78和0.79。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号