首页> 外文期刊>Annals of Biomedical Engineering: The Journal of the Biomedical Engineering Society >Microcalcifications increase coronary vulnerable plaque rupture potential: A patient-based micro-ct fluid-structure interaction study
【24h】

Microcalcifications increase coronary vulnerable plaque rupture potential: A patient-based micro-ct fluid-structure interaction study

机译:微钙化增加冠状动脉易损斑块破裂的可能性:一项基于患者的微ct流体结构相互作用研究

获取原文
获取原文并翻译 | 示例
       

摘要

Asymptomatic vulnerable plaques (VP) in coronary arteries accounts for significant level of morbidity. Their main risk is associated with their rupture which may prompt fatal heart attacks and strokes. The role of microcalcifications (micro-Ca), embedded in the VP fibrous cap, in the plaque rupture mechanics has been recently established. However, their diminutive size offers a major challenge for studying the VP rupture biomechanics on a patient specific basis. In this study, a highly detailed model was reconstructed from a post-mortem coronary specimen of a patient with observed VP, using high resolution micro-CT which captured the microcalcifications embedded in the fibrous cap. Fluid-structure interaction (FSI) simulations were conducted in the reconstructed model to examine the combined effects of micro-Ca, flow phase lag and plaque material properties on plaque burden and vulnerability. This dynamic fibrous cap stress mapping elucidates the contribution of micro-Ca and flow phase lag VP vulnerability independently. Micro-Ca embedded in the fibrous cap produced increased stresses predicted by previously published analytical model, and corroborated our previous studies. The 'micro-CT to FSI' methodology may offer better diagnostic tools for clinicians, while reducing morbidity and mortality rates for patients with vulnerable plaques and ameliorating the ensuing healthcare costs.
机译:冠状动脉的无症状易损斑块(VP)占明显的发病率水平。他们的主要危险与他们的破裂有关,这可能会导致致命的心脏病发作和中风。最近已经证实,微钙化(micro-Ca)嵌入在VP纤维帽中,在斑块破裂机制中的作用。然而,其小巧的尺寸为根据患者特定研究VP破裂生物力学提出了重大挑战。在这项研究中,使用高分辨率的micro-CT从捕捉到的VP的患者的死后冠状动脉样本中重建了高度详细的模型,该技术捕获了嵌入纤维帽的微钙化。在重建模型中进行了流固耦合(FSI)模拟,以检验微钙,流动相滞后和噬菌斑材料特性对噬菌斑负荷和脆弱性的综合影响。这种动态的纤维帽应力分布图独立地阐明了微钙和流动相滞后VP脆弱性的影响。嵌入到纤维帽中的Micro-Ca产生了以前发表的分析模型所预测的增加的应力,并证实了我们先前的研究。 “微型CT到FSI”方法可能为临床医生提供更好的诊断工具,同时降低易损斑块患者的发病率和死亡率,并减轻随之而来的医疗费用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号