...
首页> 外文期刊>Annals of Biomedical Engineering: The Journal of the Biomedical Engineering Society >In vitro validation of finite element analysis of blood flow in deformable models.
【24h】

In vitro validation of finite element analysis of blood flow in deformable models.

机译:体外验证变形模型中血流的有限元分析。

获取原文
获取原文并翻译 | 示例
           

摘要

The purpose of this article is to validate numerical simulations of flow and pressure incorporating deformable walls using in vitro flow phantoms under physiological flow and pressure conditions. We constructed two deformable flow phantoms mimicking a normal and a restricted thoracic aorta, and used a Windkessel model at the outlet boundary. We acquired flow and pressure data in the phantom while it operated under physiological conditions. Next, in silico numerical simulations were performed, and velocities, flows, and pressures in the in silico simulations were compared to those measured in the in vitro phantoms. The experimental measurements and simulated results of pressure and flow waveform shapes and magnitudes compared favorably at all of the different measurement locations in the two deformable phantoms. The average difference between measured and simulated flow and pressure was approximately 3.5 cc/s (13% of mean) and 1.5 mmHg (1.8% of mean), respectively. Velocity patterns also showed good qualitative agreement between experiment and simulation especially in regions with less complex flow patterns. We demonstrated the capabilities of numerical simulations incorporating deformable walls to capture both the vessel wall motion and wave propagation by accurately predicting the changes in the flow and pressure waveforms at various locations down the length of the deformable flow phantoms.
机译:本文的目的是使用生理流动和压力条件下的体外流动体模验证包含可变形壁的流动和压力的数值模拟。我们构造了两个可变形的流动幻影,模拟了正常和受限的主动脉,并在出口边界处使用了Windkessel模型。在人体模型在生理条件下运行时,我们获取了人体模型中的流量和压力数据。接下来,进行计算机模拟,并将计算机模拟中的速度,流量和压力与体外体模中测得的速度,流量和压力进行比较。在两个可变形体模中的所有不同测量位置处,压力和流量波形形状和大小的实验测量结果和模拟结果均得到了比较。测量和模拟流量和压力之间的平均差分别约为3.5 cc / s(平均值的13%)和1.5 mmHg(平均值的1.8%)。速度模式在实验和模拟之间也显示出良好的定性一致性,尤其是在流动模式不太复杂的区域。我们通过精确预测可变形流动体模长度范围内各个位置的流量和压力波形变化,证明了结合可变形壁的数值模拟功能可以捕获血管壁运动和波传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号