首页> 外文期刊>Annals of Biomedical Engineering: The Journal of the Biomedical Engineering Society >Limitation of finite element analysis of poroelastic behavior of biological tissues undergoing rapid loading.
【24h】

Limitation of finite element analysis of poroelastic behavior of biological tissues undergoing rapid loading.

机译:承受快速载荷的生物组织的多孔弹性行为的有限元分析的局限性。

获取原文
获取原文并翻译 | 示例
           

摘要

The finite element method is used in biomechanics to provide numerical solutions to simulations of structures having complex geometry and spatially differing material properties. Time-varying load deformation behaviors can result from solid viscoelasticity as well as viscous fluid flow through porous materials. Finite element poroelastic analysis of rapidly loaded slow-draining materials may be ill-conditioned, but this problem is not widely known in the biomechanics field. It appears as instabilities in the calculation of interstitial fluid pressures, especially near boundaries and between different materials. Accurate solutions can require impractical compromises between mesh size and time steps. This article investigates the constraints imposed by this problem on tissues representative of the intervertebral disc, subjected to moderate physiological rates of deformation. Two test cylindrical structures were found to require over 10(4) linear displacement-constant pressure elements to avoid serious oscillations in calculated fluid pressure. Fewer Taylor-Hood (quadratic displacement-linear pressure elements) were required, but with complementary increases in computational costs. The Vermeer-Verruijt criterion for 1D mesh size provided guidelines for 3D mesh sizes for given time steps. Pressure instabilities may impose limitations on the use of the finite element method for simulating fluid transport behaviors of biological soft tissues at moderately rapid physiological loading rates.
机译:在生物力学中使用有限元方法来为具有复杂几何形状和空间上不同的材料特性的结构的仿真提供数值解决方案。随时间变化的载荷变形行为可能是由于固体粘弹性以及粘性流体流经多孔材料引起的。快速加载的缓慢排水材料的有限元多孔弹性分析可能会出现问题,但是在生物力学领域该问题尚未广为人知。在计算间隙流体压力时,尤其在边界附近和不同材料之间,它表现为不稳定。准确的解决方案可能需要在网格尺寸和时间步长之间做出不切实际的折衷。本文研究了此问题对代表椎间盘的组织的约束,这些组织受到适度的生理变形速率。发现两个测试圆柱结构需要超过10(4)个线性位移恒定压力元件,以避免计算出的流体压力出现严重波动。需要较少的Taylor-Hood(二次位移线性压力元件),但计算成本却增加了互补性。一维网格尺寸的Vermeer-Verruijt准则为给定时间步长提供了3D网格尺寸的准则。压力不稳定性可能会限制使用有限元方法模拟生物软组织在中等快速生理负荷速率下的流体传输行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号