...
首页> 外文期刊>Annals of Biomedical Engineering: The Journal of the Biomedical Engineering Society >Three-dimensional numerical modeling and computational fluid dynamics simulations to analyze and improve oxygen availability in the AMC bioartificial liver.
【24h】

Three-dimensional numerical modeling and computational fluid dynamics simulations to analyze and improve oxygen availability in the AMC bioartificial liver.

机译:三维数值建模和计算流体动力学模拟,以分析和改善AMC生物人工肝中的氧利用率。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A numerical model to investigate fluid flow and oxygen (O(2)) transport and consumption in the AMC-Bioartificial Liver (AMC-BAL) was developed and applied to two representative micro models of the AMC-BAL with two different gas capillary patterns, each combined with two proposed hepatocyte distributions. Parameter studies were performed on each configuration to gain insight in fluid flow, shear stress distribution and oxygen availability in the AMC-BAL. We assessed the function of the internal oxygenator, the effect of changes in hepatocyte oxygen consumption parameters in time and the effect of the change from an experimental to a clinical setting. In addition, different methodologies were studied to improve cellular oxygen availability, i.e. external oxygenation of culture medium, culture medium flow rate, culture gas oxygen content (pO(2)) and the number of oxygenation capillaries. Standard operating conditions did not adequately provide all hepatocytes in the AMC-BAL with sufficient oxygen to maintain O(2) consumption at minimally 90% of maximal uptake rate. Cellular oxygen availability was optimized by increasing the number of gas capillaries and pO(2) of the oxygenation gas by a factor two. Pressure drop over the AMC-BAL and maximal shear stresses were low and not considered to be harmful. This information can be used to increase cellular efficiency and may ultimately lead to a more productive AMC-BAL.
机译:建立了一个用于研究AMC生物人工肝(AMC-BAL)中的流体流动和氧气(O(2))传输和消耗的数值模型,并将其应用于具有两种不同气体毛细管模式的AMC-BAL的两个代表性微模型,每个都结合了两个建议的肝细胞分布。对每种配置进行了参数研究,以了解AMC-BAL中的流体流动,剪切应力分布和氧气可用性。我们评估了内部充氧器的功能,及时改变肝细胞耗氧量参数的影响以及从实验到临床环境变化的影响。另外,研究了改善细胞氧利用率的不同方法,即培养基的外部氧合,培养基流速,培养气体氧含量(pO(2))和氧合毛细血管的数量。标准操作条件不能充分为AMC-BAL中的所有肝细胞提供足够的氧气,以将O(2)消耗维持在最大摄取率的至少90%。通过将气体毛细管的数量和充氧气体的pO(2)增加两倍来优化细胞的氧利用率。 AMC-BAL上方的压降和最大剪切应力均较低,因此认为无害。该信息可用于提高细胞效率,并最终导致生产效率更高的AMC-BAL。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号