...
首页> 外文期刊>Silicon >Study of Temperature Effect on Analog/RF and Linearity Performance of Dual Material Gate (DMG) Vertical Super-Thin Body (VSTB) FET
【24h】

Study of Temperature Effect on Analog/RF and Linearity Performance of Dual Material Gate (DMG) Vertical Super-Thin Body (VSTB) FET

机译:双层闸门(DMG)垂直超薄体(VSTB)FET的模拟/ RF和线性性能的温度效应研究

获取原文
获取原文并翻译 | 示例

摘要

This work presents a simulation study of the influence of temperature on the performance of dual material gate (DMG) vertical super-thin body (VSTB) FET. The introduction of DMG causes a drop in the off-state current (I-off) by similar to 99.18% and DIBL by 20%. Drop in the I-off enhances the on-to-off current ratio (I-on/I-off) by similar to 98.85%. A rigorous investigation on temperature dependency of DC, analog/RF, and linearity metrics was carried out. The zero temperature coefficient (ZTC) bias point for the DMG device was observed to be nearly at a gate bias of V-G = 0.41 V. Various DC figures of merit (FoM) such as subthreshold swing (SS), I-on/I-off, and threshold voltage (V-T) show improvement with temperature fall. Lowering in temperature also leads to enhanced analog/RF performance by offering superior g(m), g(d), C-gg, C-gd, maximum f(T), maximum GBP, intrinsic delay, TGF, TFP, GFP, and GTFP. However, linearity metrics like g(m2), g(m3), VIP2, VIP3, IIP3, IMD3, and 1-dB compression point show better performance with an increase in temperature.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号