首页> 外文期刊>Food and bioprocess technology >Inactivation Kinetics of Pectin Methylesterase, Polyphenol Oxidase, and Peroxidase in Cloudy Apple Juice under Microwave and Conventional Heating to Evaluate Non-Thermal Microwave Effects
【24h】

Inactivation Kinetics of Pectin Methylesterase, Polyphenol Oxidase, and Peroxidase in Cloudy Apple Juice under Microwave and Conventional Heating to Evaluate Non-Thermal Microwave Effects

机译:微波苹果汁中果胶甲基酯酶,多酚氧化酶和过氧化物酶的灭活动力学及常规加热,评价非热微波效应

获取原文
获取原文并翻译 | 示例
           

摘要

Continuous-flow microwave pasteurization provides important advantages over conventional heat exchangers such as fast volumetric heating, lower tube surface temperature, and possible non-thermal effects that enhance enzymatic and bacterial inactivation. Conventional and microwave-assisted inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) in cloudy apple juice were investigated to evaluate non-thermal effects. Experiments were conducted to provide uniform heating with accurate temperature acquisition and similar temperature profiles for conventional and microwave treatments. A two-fraction first-order kinetic model was successfully fitted to the data in a procedure that took into account the whole time-temperature profile instead of assuming isothermal conditions. Predicted inactivation curves for pasteurization at 70 and 80 A degrees C of the cloudy apple juice showed that PME has the highest thermal resistance (residual activity of 30% after 250 s at 80 A degrees C) and that there was no evidence of non-thermal microwave effects on the inactivation of these enzymes.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号