...
首页> 外文期刊>International Journal of Nanotechnology >Temperature dependent characteristics of graphene/silicon Schottky junction
【24h】

Temperature dependent characteristics of graphene/silicon Schottky junction

机译:石墨烯/硅肖特基交界处的温度依赖性特征

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene/silicon Schottky junction has been reported as a promising device for chemical sensor, biological sensor and photodetector applications. However, abnormal characteristics are often reported and these ambiguities are explained inconsistently in the literature. This work aims at characterising the temperature effects on the current-voltage characteristics so as to explore the physical mechanisms leading to the abnormal behaviours of graphene/silicon Schottky junction. Particular attention is on the effect of silicon surface states which have been studied quite comprehensively in various silicon devices but have not been given enough attention for the graphene/Si structure. Results show that a graphene/Si Schottky junction could have quite different temperature dependences on the barrier height, ideality factor and reverse characteristics as compared with metal/semiconductor contacts. The dangling bonds on silicon surface, isolated by the ultrathin graphene layer, are still electrically active and play an important role in the carrier transport, photonic and chemical sensing capabilities of the graphene/Si junction. Graphene/Si contact prepared by transfer method cannot be a good Schottky junction from the electronic property and stability points of view.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号