...
首页> 外文期刊>International Journal of Nanotechnology >In-situ characterisation of the defect density in reduced graphene oxide under electrical stress using fluorescence microscopy
【24h】

In-situ characterisation of the defect density in reduced graphene oxide under electrical stress using fluorescence microscopy

机译:使用荧光显微镜电应力下石墨烯氧化物中缺陷密度的原位表征

获取原文
获取原文并翻译 | 示例
           

摘要

A new approach to characterise the defect density in graphene oxide (GO) is presented in this work. Fluorescence microscopy is employed to directly observe changes in defect density on the graphene oxide surface at the macroscopic level. The area under scan becomes darker as the electrical bias is increased from 0.5 V to 3 V. Gray level conversion of the fluorescence images is used to quantify our results. The reduction of graphene oxide as observed under fluorescence microscopy images is also verified using Raman microscopy where I_(D)/I_(G)ratio decreases as the voltage stress is increased. However, defect density increases for the samples from 0 V to 0.5 V range and is maintained till 1 V, which shows that this range may not be suitable for electronic applications when graphene oxide is employed as its electronic properties are poor in this range. Thus, this in-situ measurement of defect density on the graphene oxide for large area graphene samples can help in identifying the uniformity of the defect density on graphene oxide as well as its defect density changes under electrical bias condition, an information crucial for its electronic applications.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号