...
首页> 外文期刊>International Journal of Automotive Technology >Prediction of Nonlinear Stiffness of Automotive Bushings by Artificial Neural Network Models Trained by Data from Finite Element Analysis
【24h】

Prediction of Nonlinear Stiffness of Automotive Bushings by Artificial Neural Network Models Trained by Data from Finite Element Analysis

机译:通过来自有限元分析训练的人工神经网络模型预测汽车衬套的非线性刚度

获取原文
获取原文并翻译 | 示例

摘要

Due to the nonlinear behavior of rubber for bushings, the prediction of mechanical properties of the bushing requires nonlinear finite element analysis (FEA) techniques and a lot of computation time. Therefore, we propose a method to efficiently predict the stiffness of bushings using an Artificial Neural Network (ANN) model trained by data from FEA. First, FEA was performed for the designed 3D and 2D bushing models. Based on the relationship between the bushing shape design variables and the stiffness values predicted by the FEA, we trained the Multilayer Perceptron (MLP) and the Convolutional Neural Network (CNN) models among the ANN models. Given the shape design variables of the bushing model, the stiffness values were predicted by the MLP model. Given the image of the bushing model, the stiffness values were predicted by the CNN model. The stiffness prediction results showed that both models can be used to predict the stiffness of the bushings, and that the CNN model is slightly more accurate than the MLP model. In particular, it is expected that designers can easily estimate stiffness values by taking advantage of the CNN model which can use photographic images of real parts as inputs.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号