首页> 外文期刊>International Journal of Automotive Technology >DESIGN AND VALIDATION OF AN ELECTRO-HYDRAULIC BRAKE SYSTEM USING HARDWARE-IN-THE-LOOP REAL-TIME SIMULATION
【24h】

DESIGN AND VALIDATION OF AN ELECTRO-HYDRAULIC BRAKE SYSTEM USING HARDWARE-IN-THE-LOOP REAL-TIME SIMULATION

机译:使用硬件in-Loop实时模拟的电液制动系统的设计与验证

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper presents a novel electric booster (E-booster) that exibits superior performance advantages over traditional vacuum boosters. The proposed E-booster, consisting of an electric motor and a ball screw assembly, is designed for electro-hydraulic brake (EHB) systems to meet relevant requirements for electric vehicles and active safety technologies. A mathematical model for an EHB system is generated to determine the desired values of the parameters for the E-booster prototype using numerical simulation in MATLAB. Simulation results of the EHB system with the virtual E-booster demonstrate the feasibility and effectiveness of the innovative technique. Built upon the results derived from the numerical simualtions, an integrated algorithm based on the Kalman filter and a sliding mode control technique is designed to control the E-booster motor and to implement the brake booster function. A hardware-in-the-loop (HIL) real-time simulation system equipped with the E-booster prototype is developed. HIL real-time simulations are conducted to evaluate the proposed algorithm. The HIL real-time simulation results demonstrate that the proposed algorithm generates booster brake forces fast, and forces the ball nut to track the push rod well to ensure comfortable brake pedal feel.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号