首页> 外文期刊>International Journal of Advanced Robotic Systems >An optimum strategy for robotic tomato grasping based on real-time viscoelastic parameters estimation
【24h】

An optimum strategy for robotic tomato grasping based on real-time viscoelastic parameters estimation

机译:基于实时粘弹性参数估计的机器人番茄抓取的最佳策略

获取原文
获取原文并翻译 | 示例
           

摘要

It is a challenging task to achieve rapid and stable grasping of fruit and vegetable without damages for the agricultural robot. From the point of view of which most of fruits and vegetables are viscoelastic material, the viscoelastic characteristic of tomato was analyzed based on Burgers model in this article to provide a reference for the robotic grasping. First, the real-time viscoelastic parameters estimation model based on back-propagation neural network was established. The 3-11-4 network structure was applied, where the grasping force, displacement, and time were input to the model to estimate four viscoelastic parameters. The relative error was less than 15% at the 0.2-s estimation and correlation coefficient of fitting could reach to 0.99. Then, the expression of plastic deformation was derived by analyzing the dynamic characteristic of tomato based on Burgers model and Gripper's model during grasping. The minimum plastic deformation was taken as the condition to optimize the grasping speed and operation time. Finally, the result of simulation and experiment showed the feasibility of the method proposed in this article. This research can achieve the goal of reducing the grasping time of robots without damaging the fruit and provide a reference for robots grasping process optimization.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号