首页> 外文期刊>Agricultural and Forest Meteorology >Toward making canopy hemispherical photography independent of illumination conditions: A deep-learning-based approach
【24h】

Toward making canopy hemispherical photography independent of illumination conditions: A deep-learning-based approach

机译:使树冠半球摄影无关:基于深度学习的方法

获取原文
获取原文并翻译 | 示例
       

摘要

Hemispherical photography produces the most accurate results when working with well-exposed photographs acquired under diffuse light conditions (diffuse-light images). Obtaining such data can be prohibitively expensive when surveying hundreds of plots is required. A relatively inexpensive alternative is using photographs acquired under direct sunlight (sunlight images). However, this practice leads to high errors since the standard processing algorithms expect diffuse-light imagery. Here, instead of using classification algorithms, which is the unique dominant practice, we approached the processing of sunlight images using deep learning (DL) regression. We implemented DL systems by using the general-purpose convolutional neural networks known as VGGNet 16, VGGNet 19, Res-Net, and SE-ResNet. We trained them with 608 samples acquired in a South American temperate forest populated by Nothofagus pumilio. For their evaluation, we used 113 independent samples. Each sample (X, Y) consisted of one or several sunlight images (X), and the plant area index (PAI) and effective PAI (PAIe) extracted from a diffuse-light image (Y). The sunlight images include clear sky and broken clouds with sun elevation from 15 degrees to 47 degrees. We obtained the best results with the SE-ResNet architecture. The system requires a low-resolution input reprojected to cylindrical, and it can make predictions with 10% root mean square error, even from pictures acquired with automatic exposure, which challenge previous findings. Furthermore, similar results (R-2 = 0.9, n = 104) can be obtained by feeding the system with photographs acquired with an inexpensive fisheye converter attached to a smartphone. Altogether, results indicate that our approach is a cost-efficient option for surveying hundreds of plots under direct sunlight. Therefore, combining our method with the traditional procedures provides processing solutions for virtually all kinds of illumination conditions.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号