首页> 外文期刊>Agronomy Journal >Nodulating and non-nodulating soybean rotation influence on soil nitrate-nitrogen and water, and sorghum yield.
【24h】

Nodulating and non-nodulating soybean rotation influence on soil nitrate-nitrogen and water, and sorghum yield.

机译:结瘤性和非结瘤性大豆轮作对土壤硝态氮和水以及高粱产量的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Soybean [Glycine max (L.) Merr.] rotation has been shown to enhance grain sorghum [Sorghum bicolor (L.) Moench] growth and yield due in part to N contribution. Sorghum grain and stover yield, yield components, soil water and soil NO3-N were measured in a long-term rotation study in 2003 and 2004 on a Sharpsburg silty clay loam (fine, smectitic, mesic Typic Argiudoll). The objectives were to separate biologically fixed N from other rotation effects on sorghum grain and stover yields, and to relate yield to yield components, soil NO3-N and water contents. The cropping sequences were continuous grain sorghum, and sorghum rotated with non-nodulating or nodulating soybean. Soil amendment treatments consisted of control (zero), manure (17-25 Mg dry matter ha-1 yr-1), and N (41 kg ha-1 for soybean and 84 kg ha-1 yr-1 for sorghum). Cropping sequence x soil amendment interaction effects were found for most parameters measured. High soil NO3-N following soybean rotation and from amendment application promoted plant growth leading to low soil water content at anthesis, and increased kernel weight, grain and stover yield. Rotation with non-nodulating soybean without soil amendment increased grain yield by 2.6 to 3.0 Mg ha-1 and stover yield by 1.5 to 1.8 Mg ha-1 over continuous sorghum without soil amendment. Rotation with nodulating soybean further increased grain yield by 1.7 to 1.8 Mg ha-1 and stover yield by 0.6 to 0.9 Mg ha-1. Biologically fixed N effects accounted for only 35 to 41% of enhanced sorghum yield due to crop rotation with soybean. Soil NO3-N during vegetative growth, plant height, soil water content at anthesis and kernel weight were the most important parameters related to sorghum grain yield across cropping sequences and soil amendments..
机译:大豆[Glycine max(L.)Merr。]的轮作已显示出可提高谷物高粱[Sorghum bicolor(L.)Moench]的生长和产量,部分原因是氮的贡献。 2003年和2004年在Sharpsburg粉质粘土壤土(细,近晶,中性Typic Argiudoll)上进行了长期轮换研究,测量了高粱的谷物和秸秆产量,产量组成,土壤水分和土壤NO3-N。目的是将生物固定氮与其他轮作对高粱籽粒和秸秆产量的影响分开,并将产量与产量成分,土壤NO3-N和水分含量相关。种植顺序为连续高粱,高粱与不结瘤或结瘤的大豆轮作。土壤改良剂处理包括对照(零),肥料(17-25 Mg干物质ha-1 yr-1)和N(大豆为41 kg ha-1,高粱为84 kg ha-1 yr-1)。对于大多数测得的参数,发现了种植顺序x土壤改良剂相互作用的影响。大豆轮作后和改良施肥后土壤NO3-N含量高,促进了植物的生长,导致花期土壤水含量低,并增加了籽粒重量,籽粒和秸秆产量。与不加土壤改良剂的连续高粱相比,不加土壤改良剂的非结瘤大豆轮作可使谷物产量增加2.6至3.0 Mg ha-1,秸秆产量提高1.5至1.8 Mg ha-1。结瘤大豆的轮作进一步将谷物产量提高了1.7至1.8 Mg ha-1,秸秆产量提高了0.6至0.9 Mg ha-1。由于大豆轮作,生物固定的氮效应仅占高粱产量提高的35%至41%。营养生长期间的土壤NO3-N,植物高度,花期的土壤含水量和籽粒重量是与高粱种植顺序和土壤改良剂产量相关的最重要参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号