...
首页> 外文期刊>Agronomy for Sustainable Development >Soybean is less impacted by water stress using Bradyrhizobium japonicum and thuricin-17 from Bacillus thuringiensis
【24h】

Soybean is less impacted by water stress using Bradyrhizobium japonicum and thuricin-17 from Bacillus thuringiensis

机译:使用苏云金芽孢杆菌的日本根瘤菌和苏利星17,水分胁迫对大豆的影响较小

获取原文
获取原文并翻译 | 示例
           

摘要

Climate change is forecasted to induce more drought stress events. Water scarcity is already the most limiting abiotic stress for crop production. With higher food demand, there is a need for sustainable solutions to cope with the loss of productivity due to water stress. It is known that plant growth-promoting rhizobacteria (PGPR) can colonize plant roots and increase plant growth. However, there is actually no sustainable method to decrease the impact of water stress. Therefore, we hypothesized that an application of thuricin-17, a molecule produced by the PGPR Bacillus thuringiensis, could enhance soybean tolerance to water stress. We grew soybean plants for 1 month in growth chambers in order to evaluate their response to thuricin-17 root application under drought, in association with the inoculation of N-2-fixing Bradyrhizobium japonicum. We measured traits reflecting root architecture: number of tips, root diameter, root length, number of nodules; water fluxes: water potential, stomatal conductance; carbon nutrition: leaf area, photosynthetic rate, biomass and carbon partitioning; nitrogen nutrition: nitrogen partitioning and hormone signalling: abscisic acid concentration during the vegetative growth period. Our results show that thuricin-17 application under water stress increased plant biomass by 17 %, thus masking drought impact. This effect is due to modifications of below-ground structures, with 37 % increase of root and 55 % increase of nodule biomass, and to slight increases of leaf area and photosynthetic rate. We also observed that application of thuricin-17 induced a 30 % increase of root abscisic acid, an increase of root length and of leaf water potential. Finally, thuricin-17 induced an activation of nodule formation by 40 %, a partial restoration of nodule-specific activity, nodule growth and consequently, an increase by 17 % of the total nitrogen amount in the plant. Overall, our findings reveal a new method to decrease the negative impact of water stress. Results also demonstrate that the plant restored an adequate water and N balance by changing its root structure.
机译:预测气候变化将引发更多的干旱胁迫事件。缺水已经是作物生产中最限制性的非生物胁迫。随着粮食需求的增加,需要可持续的解决方案来应对由于缺水而导致的生产力下降。众所周知,促进植物生长的根际细菌(PGPR)可以在植物根部定植并增加植物的生长。但是,实际上没有减少水胁迫影响的可持续方法。因此,我们假设应用PGPR苏云金芽孢杆菌产生的分子thuricin-17可以增强大豆对水分胁迫的耐受性。我们将大豆植物在生长室中种植了1个月,以评估其在干旱条件下与接种N-2固定根瘤菌的日本大豆对thuricin-17根施用的反应。我们测量了反映根系结构的特征:叶尖数量,根系直径,根长,根瘤数量;水通量:水势,气孔导度;碳营养:叶面积,光合速率,生物量和碳分配;氮营养:氮分配和激素信号传递:营养生长期间脱落酸的浓度。我们的结果表明,在水分胁迫下施用苏氨酸17可使植物生物量增加17%,从而掩盖了干旱的影响。这种作用归因于地下结构的改变,其中根部增加了37%,根瘤生物量增加了55%,并且叶面积和光合速率略有增加。我们还观察到,应用苏氨酸17诱导根脱落酸增加30%,根长和叶水势增加。最后,thuricin-17诱导了40%的根瘤形成激活,部分恢复了根瘤特异性活性,根瘤生长,因此,植物中总氮量增加了17%。总的来说,我们的发现揭示了一种减少水分胁迫负面影响的新方法。结果还表明,该植物通过改变根系结构恢复了充足的水和氮平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号