首页> 外文期刊>Computational statistics & data analysis >Sparse pathway-based prediction models for high-throughput molecular data
【24h】

Sparse pathway-based prediction models for high-throughput molecular data

机译:高通量分子数据的基于稀疏路径的预测模型

获取原文
获取原文并翻译 | 示例
           

摘要

Pathway-based prediction problems for high-throughput molecular data motivate the development of sparsity-constrained models with structured predictive variables. Intuitively it is desirable to incorporate the structural information into the model building procedure, potentially for improving both interpretability and prediction performances. Various random-effect models are developed for structured sparse prediction where the predictive variables genes can be naturally grouped into overlapping groups or pathways. The hierarchical likelihood approach can be used for these random-effect models that impose sparse selection of the overlapping groups as well as further selection within the selected groups. In addition, the approach leads to a unified optimization algorithm for these random-effect models. Extensive numerical studies based on simulated and real breast-cancer data demonstrate that the proposed methods perform well against existing methods that ignore the structural information. (C) 2018 Elsevier B.V. All rights reserved.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号