...
首页> 外文期刊>ChemCatChem >An In Situ Quick X-ray Absorption Spectroscopy Study on Pt3Sn/Graphene Catalyst for Ethanol Oxidation Reaction
【24h】

An In Situ Quick X-ray Absorption Spectroscopy Study on Pt3Sn/Graphene Catalyst for Ethanol Oxidation Reaction

机译:乙醇氧化反应PT3SN /石墨烯催化剂的原位快速X射线吸收光谱研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Direct ethanol fuel cells (DEFCs) promise the use of ethanol as a bio-renewable and non-toxic fuel for energy conversion through the ethanol oxidation reaction (EOR). Well dispersed Pt3Sn and Pt nanoparticles on graphene (denoted Pt3Sn/G and Pt/G) support electrocatalysts made with alcohol reduction were tested towards EOR. The HRTEM and XRD characterizations provide the morphology and crystal phase of the Pt3Sn alloy nanoparticles, which has a uniform particle size of 2.8 +/- 0.08 nm, as is consistent with a Pt/G catalyst as reference. According to the in-situ quick X-ray-absorption near-edge structure (QXANES) spectra during an anodic scan of CV for the EOR test to explain clearly the potential-dependent electronic state of the prepared electrocatalysts, the white-line intensities of the Pt L-3-edge QXANES spectra and their spectral profiles vary appreciably with the electrode voltage. Moreover, Pt3Sn/G shows a better EOR performance than Pt/G because SnO2 can improve adsorption and dissociation during the oxidation by an appropriate expansion of the lattice parameters in the PtSn alloy. This work provides insight into the reaction mechanism of dissociative adsorption of ethanol on alloyed Pt surface, which has an important role in enhancing the EOR activity for a complete ethanol oxidation.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号