...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Hierarchically nitrogen-doped carbon wrapped Ni0.6Fe0.4Se2 binary-metal selenide nanocubes with extraordinary rate performance and high pseudocapacitive contribution for sodium-ion anodes
【24h】

Hierarchically nitrogen-doped carbon wrapped Ni0.6Fe0.4Se2 binary-metal selenide nanocubes with extraordinary rate performance and high pseudocapacitive contribution for sodium-ion anodes

机译:含氮氮碳包裹的Ni0.6Fe0.4se2二元金属硒化纳米孔,具有非凡的速率性能和钠离子阳极的高假胶剂贡献

获取原文
获取原文并翻译 | 示例

摘要

Because of their considerable theoretical capacity and intrinsic conductivity, transition metal selenides have been considered as advanced electrode materials for sodium-ion batteries (SIBs). However, fast capacity fade and inferior rate performance still impede their large-scale application. Herein, a hierarchically nitrogen-doped carbon (NC) wrapped binary transition metal selenide (Ni0.6Fe0.4Se2@NC, termed NFS@NC) nanomaterial derived from polydopamine coated Prussian blue analogs (Ni-3[Fe(CN)(6)](2), Ni-F-PBA) was synthesized through a low-energy selenization and carbonization process. The excellent morphology, large surface area, intimate contact of nanoparticles with the carbon matrix and better combination of binary metal selenides can achieve outstanding sodium storage performance through their synergy. Notably, nitrogen-containing compound are efficiently converted to nitrogen-doped carbon with functional Fe-N-C bonds, facilitating the faster transfer of Na+. As a result, the as-obtained NFS@NC showed superior rate performance (449.3 mA h g(-1) at 0.2 A g(-1) and 289.5 mA h g(-1) at 10 A g(-1)) and stable long-term cyclability (372.4 mA h g(-1) after 2000 cycles at 5 A g(-1)) as an anode material for SIBs. Kinetic analysis showed that the excellent Na-storage performance of the NFS@NC anode was mainly due to the large pseudocapacitive contribution resulting from the unique nano-multilevel composite structure.
机译:过渡金属硒化物由于其可观的理论容量和固有导电性,被认为是钠离子电池(SIB)的先进电极材料。然而,快速的容量衰减和较低的速率性能仍然阻碍了它们的大规模应用。在本文中,一种分层氮掺杂碳(NC)包裹的二元过渡金属硒化物(Ni0.6Fe0。4Se2@NC,被称为NFS@NC)通过低能硒化和碳化工艺合成了由聚多巴胺包覆的普鲁士蓝类似物(Ni-3[Fe(CN)(6)](2),Ni-F-PBA)衍生的纳米材料。纳米颗粒具有良好的形貌、较大的比表面积、与碳基体的紧密接触以及二元金属硒化物的更好结合,可以通过它们的协同作用实现优异的储钠性能。值得注意的是,含氮化合物通过功能性Fe-N-C键有效地转化为掺氮碳,促进了Na+的更快转移。因此,所获得的NFS@NC显示出优越的速率性能(0.2 A g(-1)时为449.3 mA h g(-1)和10 A g(-1)时为289.5 mA h g(-1)以及稳定的长期可循环性(在5 A g(-1)下进行2000次循环后为372.4 mA h g(-1))作为SIB的阳极材料。动力学分析表明,该催化剂具有优良的钠贮存性能NFS@NC阳极主要是由于独特的纳米多层复合结构产生的巨大假电容贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号