...
首页> 外文期刊>Journal of Hydrology >Flood attenuation hydraulics of channel-spanning leaky barriers
【24h】

Flood attenuation hydraulics of channel-spanning leaky barriers

机译:渠道泄漏障碍洪水衰减液压

获取原文
获取原文并翻译 | 示例

摘要

Natural flood management aims to enhance natural processes to build resilience into flood risk management alongside hard engineering methods of flood defence, using 'soft engineering' methods such as leaky barriers. This study addresses the research gaps pertaining to the backwater effects of different leaky barrier designs and the physical characteristics that determine the extent of flood attenuation. Porous and non-porous leaky barrier designs, which varied by longitudinal length, blockage ratio and log arrangement, were tested in a laboratory flume with a compound channel cross-section. Flow area afflux (defined as the upstream increase in flow area caused by the leaky barrier compared to the uniform flow condition without the barrier) and headloss were used to quantify the backwater effects of the leaky barrier under 80 and 100% bankfull discharges. For inbank flows, leaky barrier longitudinal length and cross-sectional blockage ratio governed head loss and drag coefficients, which were higher for non-porous than for porous leaky barriers. The cross-sectional blockage ratio was the primary factor increasing area afflux, indicating that leaky barrier designs which maximise channel obstruction will result in higher flood attenuation. Longitudinal length had a limited effect on stage and area afflux, unless it was accompanied by an increase in blockage ratio, especially for the non-porous structures. The use of uniformly distributed logs resulted in equal or higher area afflux than the more physically complex barriers that used varied log orientations. The non-porous structures resulted in at least twice the area afflux compared to their porous counterparts, indicating that over time, accumulation of organic matter and sediments, which render the barriers more watertight, will enhance backwater effects, flood storage and downstream attenuation.
机译:自然洪水管理旨在通过使用“软工程”方法,如渗漏屏障,加强自然过程,将抗灾能力与防洪的硬工程方法结合起来,构建洪水风险管理。本研究解决了与不同渗漏屏障设计的回水效应有关的研究空白,以及决定洪水衰减程度的物理特征。在具有复合渠道横截面的实验室水槽中,对多孔和非多孔防渗墙设计进行了试验,这些设计随纵向长度、堵塞率和原木布置而变化。流量面积流入(定义为与无障碍物的均匀流条件相比,泄漏障碍物引起的上游流量面积增加)和水头损失用于量化80%和100%满岸流量下泄漏障碍物的回水效应。对于岸内流动,泄漏屏障的纵向长度和横截面堵塞率决定了水头损失和阻力系数,非多孔屏障的水头损失和阻力系数高于多孔泄漏屏障的水头损失和阻力系数。横截面堵塞率是增加面积流入的主要因素,这表明最大限度地增加渠道堵塞的泄漏屏障设计将导致更高的洪水衰减。纵向长度对阶段和区域流入的影响有限,除非它伴随着堵塞率的增加,尤其是对于非多孔结构。使用均匀分布的原木比使用不同原木方向的物理上更复杂的屏障产生相等或更高的面积流入。与多孔结构相比,非多孔结构导致的面积流入至少是其多孔结构的两倍,这表明随着时间的推移,有机物和沉积物的积累(使屏障更加防水)将增强回水效应、蓄洪和下游衰减。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号