...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Role of amorphous layer and interfaces on the tensile behaviors of triple-phase Ti/Ni nanolaminates: A molecular dynamics study
【24h】

Role of amorphous layer and interfaces on the tensile behaviors of triple-phase Ti/Ni nanolaminates: A molecular dynamics study

机译:非晶层和界面对三相Ti / Ni纳米胺抗拉行为的作用:分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Superior properties of Ti/Ni nanolaminates prompt researchers to comprehend their mechanical behaviors deeply. Lacking investigations at several nanometers range limits their applications in high-precision fields, as the amorphous phase can be formed at the junction regions. By using the molecular dynamics method, three models are chosen to investigate the role of the amorphous layer and different interfaces in triplephase Ti/Ni nanolaminates during the tensile process. The results demonstrate that mechanical perfor-mances of triple-phase nanolaminates are closely related to the fraction of crystalline and amorphous phases. Strength of the nanolaminates decreases with increasing amorphous layer spacing (d). However, acceptable plastic properties can be achieved when amorphous layer spacing satisfies d <= 3.91 nm. Microstructure evolution analysis reveals different plastic deformation carriers nucleate and propagate in crystalline and amorphous layers, which contains grain reorientation and basal dislocation propagation in Ti layer, partial dislocations propagation in Ni layer, formation and expansion of shear transformation zones in the amorphous layer. Plastic co-deformation of dissimilar phases dominates the plastic deformation of triple-phase nanolaminates. Crystalline/crystalline interfaces (CCIs) and amorphous/crystalline interfaces (ACIs) also play vital roles in plastic deformations. CCIs impede and absorb the grain boundaries moving toward the interfaces and then act as dislocation sources. ACIs accommodate local deformation at the interfacial regions, and are preferred sites for different plastic deformation carries nucleation. ACIs and CCIs can also connect the plastic deformation carries in different phases, which improves the overall plasticity of triple-phase nanolaminates. The insights obtained in this work can promote the design and application of advanced Ti/Ni nanolaminated materials. (C) 2021 Elsevier B.V. All rights reserved.
机译:Ti/Ni纳米层压板的优异性能促使研究人员深入了解其力学行为。由于缺乏在几个纳米范围内的研究,它们在高精度领域的应用受到限制,因为非晶相可以在结区形成。采用分子动力学方法,选择了三种模型,研究了三相Ti/Ni纳米层压板在拉伸过程中非晶层和不同界面的作用。结果表明,三相纳米层压板的力学性能与晶相和非晶相的比例密切相关。纳米层压板的强度随着非晶层间距(d)的增加而降低。然而,当非晶层间距满足d<=3.91 nm时,可获得可接受的塑性性能。微观结构演化分析表明,不同的塑性变形载体在晶态和非晶态层中形核和传播,包括Ti层中的晶粒再取向和基态位错传播、Ni层中的部分位错传播、非晶态层中剪切转变区的形成和扩展。三相纳米层压板的塑性变形主要由异种相的塑性共变形控制。结晶/结晶界面(CCI)和非晶/结晶界面(ACI)在塑性变形中也起着至关重要的作用。CCI阻碍并吸收向界面移动的晶界,然后充当位错源。ACI适应界面区域的局部变形,是不同塑性变形的首选位置。ACIs和CCIs还可以连接不同阶段的塑性变形载体,从而提高三相纳米层压板的整体塑性。这项工作中获得的见解可以促进先进的Ti/Ni纳米层压材料的设计和应用。(c)2021爱思唯尔B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号