...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Constructing ultrathin TiO2 protection layers via atomic layer deposition for stable lithium metal anode cycling
【24h】

Constructing ultrathin TiO2 protection layers via atomic layer deposition for stable lithium metal anode cycling

机译:通过原子层沉积构建超薄TiO2保护层,用于稳定锂金属阳极循环

获取原文
获取原文并翻译 | 示例

摘要

Uncontrollable dendrite growth during the repeated plating stripping of Li ions induces short cycle life and safety issues, which has severely impeded the practical application of lithium metal battery. It is acknowledged that the solid electrolyte interphase (SEI) is pivotal for Li metal anode stabilization. Here, a lithium metal anode coated with an artificial SEI film as the working electrode is applied. The TiO2 coating layer is firstly demonstrated for the lithium metal anode protection via atomic layer deposition (ALD) method. Thanks to the ultrathin TiO2 layer, dendritic growth is suppressed and the cycling lifetime is significantly improved. Additionally, the thickness of TiO2 protective layer has been further optimized. Comparing with other different thickness TiO2 layer, 5 nm TiO2 layer is found to be the optimized parameter toward capacity, cycling stability and rate capability in both symmetric battery system and full-cell system. The TiO2 layer promoted uniform deposition of Li+ and effectively inhibited the growth of lithium dendrites. Symmetric Li/50TiO(2)parallel to Li/50TiO(2) battery could cycle stably for more than 1600 h at 1 mA cm(-2), and more than 500 hat 3 mA cm(-2) and 10 mA cm(-2) current density. The Li/50TiO(2)parallel to NCM622 full-cell exhibited better rate performance and long-cycle performance, which capacity retention was increased by 23.3% compared to bare electrode after 100 cycles at 0.5 C charge-discharge current density. Furthermore, the inherent working mechanism of TiO2 artificial SEI film has been proposed. This work provides an effective and new alternative method for lithium metal anodes protection, which is critical for the future design of next-generation Li metal batteries under safe operation. (C) 2021 Elsevier B.V. All rights reserved.
机译:在锂离子的反复电镀剥离过程中,不可控的枝晶生长会导致短周期寿命和安全问题,严重阻碍了锂金属电池的实际应用。固体电解质界面相(SEI)是锂金属阳极稳定的关键。这里,使用涂有人造SEI膜的锂金属阳极作为工作电极。首次通过原子层沉积(ALD)方法证明了TiO2涂层用于锂金属阳极保护。由于超薄的TiO2层,树枝状生长受到抑制,循环寿命显著提高。此外,进一步优化了TiO2保护层的厚度。与其他不同厚度的TiO2层相比,在对称电池系统和全电池系统中,5nm TiO2层是容量、循环稳定性和速率性能的优化参数。TiO2层促进了锂离子的均匀沉积,有效抑制了锂树枝晶的生长。与Li/50TiO(2)电池并联的对称Li/50TiO(2)电池在1mA-cm(-2)电流密度下可稳定循环1600h以上,在3mA-cm(-2)和10mA-cm(-2)电流密度下可稳定循环500h以上。与NCM622全电池并联的Li/50TiO(2)具有更好的速率性能和长周期性能,在0.5 C充放电电流密度下进行100次循环后,其容量保持率比裸电极提高了23.3%。此外,还提出了TiO2人工SEI膜的内在工作机理。这项工作为锂金属阳极保护提供了一种有效的、新的替代方法,对未来设计安全运行的下一代锂金属电池至关重要。(c)2021爱思唯尔B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号